Юсб распиновка

Распиновка разъёмов USB 2.0

Юсб распиновка

USB (Universal Serial Bus — Универсальная Последовательная Шина)
Всё многообразие коннекторов USB версии 2.0 отражено на картинке ниже. Картинка кликабельна.

Юсб распиновка

Ну, и упрощённая, так сказать, практическая схема:

Юсб распиновка

Название того или иного коннектора снабжается буквенными индексами.

  • А — активное, питающее устройство (компьютер, хост)
  • B — пассивное, подключаемое устройство (принтер, сканер)

Например: USB micro-BM — штекер (M) для подключения к пассивному устройству (B); размер micro .

Распиновка (распайка) разъема USB (гнёзда и штекеры)
Назначение проводов в USB кабеле таково:

  1. Красный VBUS (+5V, Vcc — Voltage Collector Collector) +5 Вольт постоянного напряжения относительно GND. Максимальный ток — 500 mA
  2. Белый D- (-Data)
  3. Зелёный D+ (+Data)
  4. Чёрный GND — общий провод, «земля», «минус», 0 Вольт

Разъёмы mini и micro содержат 5 контактов:

  1. Красный VBUS
  2. Белый D-
  3. Зелёный D+
  4. ID — в разъёмах «B» не задействован; в разъёмах «A» замкнут с GND для поддержки функции «OTG»
  5. Чёрный GND

Кроме прочего, в кабеле содержится (правда, не всегда) оголённый провод Shield — корпус, экран, оплётка. Этому проводу номер не присваивается.

Распиновка шнура мыши и клавиатуры
У некоторых мышей цвета в кабеле могут отличаться от стандартных:

Во избежание разночтений:
Во всех таблицах вид разъёма дан с его внешней, рабочей стороны (а не со стороны пайки!) .
Изолирующие детали разъёма отмечены светло-серым цветом, металлические части — тёмно-серым, а полости разъёма обозначены белым цветом.

Ну, с обычными USB всё просто — берёте изображение лицевой части коннектора в зеркальном отображении и паяете.
Распайка штекеров USB mini и USB micro с мотнтажной стороны приведена на картинке ниже. Если паяете простой дата-кабель (для связи ПК и мобильника/смартфона/планшета), то 4-й контакт не используете. При пайке кабеля OTG (для подключения к смартфону флешек и прочего) 4-й контакт соединяете с 5-м.

Юсб распиновка

Разъёмы mini и micro содержат 5 контактов. В разъёмах типа «B» четвёртый контакт не используется. В разъёмах типа «A» четвёртый контакт замкнут с GND. А самому контакту GND достаётся почётное пятое место.

Похожие записи для ознакомления:

  • Юсб распиновка Зарядка гаджетов через USB
  • Юсб распиновка Распиновка разъемов «Мыши и клавиатуры PS/2»
  • Юсб распиновка Распиновка в шнурах мышей и клавиатур…
  • Юсб распиновка Ремонт блоков питания ПК
  • Юсб распиновка Совместимость матриц: ламповые и светодиодные матрицы

Post navigation

Свежие записи

Свежие комментарии

Свежие записи

Подпишись на нашу рассылку ниже

*****

Распиновка USB разъема: USB, mini-USB, micro-USB

В данной статье приведена общая информация о стандарте USB, а также распиновкаUSB разъема по цветам всех видов (USB, mini-USB, micro-USB, USB-3.0).

Разъем USB (Universal Serial Bus) – это последовательная шина универсального назначения, современный способ подсоединения внешних устройств к персональному компьютеру. Заменяет ранее используемые способы подключения (последовательный и параллельный порт, PS/2, Gameport и т.д.) для обычных видов периферийных устройств — принтеры, мыши, клавиатуры, джойстики, камеры, модемы и т.д. Также данный разъем позволяет организовывать обмен данными между компьютером и видеокамерой, карт-ридером, MP3 — плеером, внешним жестким диском.

Преимуществом USB разъема перед иными разъемами заключается в возможности подключения Plug&Play устройств без необходимости перезагрузки компьютера или ручной установке драйверов. Устройства Plug&Play могут быть подключены во время работы компьютера и в течение нескольких секунд приступить к работе.

При подключении нового устройства сначала хаб (кабельный концентратор) получает высокий уровень по линии передачи данных, которое сообщает, что появилось новое оборудование. Затем следуют следующие шаги:

  1. Хаб сообщает Хост-компьютеру о том, что было подключено новое устройство.
  2. Хост-компьютер запрашивает хаб, на какой порт было подключено устройство.
  3. После получения ответа компьютер выдает команду об активации данного порта и выполняет обнуление (сброс) шины.
  4. Концентратор формирует сигнал сброса (RESET) длительностью 10 мсек. Выходной ток питания устройства составляет 100 мА. Устройство теперь готово к работе и имеет адрес по умолчанию.

Создание USB — результат сотрудничества таких компаний как Compaq, NEC, Hewlett-Packard, Philips, Intel, Lucent и Microsoft. USB стандарт был призван заменить широко используемый последовательный порт RS-232. USB в целом облегчает работу пользователю и имеет большую пропускную способность. чем последовательный порт RS-232. Первая спецификация USB была разработана в 1995 году, как недорогой универсальный интерфейс для подсоединения внешних устройств, которые не требовали большую пропускную способность данных.

Три версии USB

Версия USB 1.1 предназначен был для обслуживания медленных периферийных устройств (Low-Speed) со скоростью передачи данных 1,5 Мбит/с и быстрых устройств (Full-Speed) со скоростью передачи данных 12 Мбит/с. USB 1.1, однако, был не в состоянии конкурировать с высокоскоростным интерфейсом, например. FireWire (IEEE 1394) от компании Apple со скоростью передачи данных до 400 Мбит/с.

В 1999 году стали задумываться о втором поколении USB, который был бы применим и для более сложных устройств (например, цифровых видеокамер). Эта новая версия, обозначаемая как USB 2.0 была выпущена 2000 году и обеспечивала максимальную скорость до 480 Мбит/с в режиме Hi-Speed и сохранила обратную совместимость с USB 1.1 (тип передачи данных: Full-Speed. Low-Speed).

Третья версия (обозначаемая также как Super-speed USB) была спроектирована в ноябре 2008 года, но, вероятно, из-за финансового кризиса ее массовое распространение было отложено вплоть до 2010. USB 3.0 имеет более чем в 10 раз большую скорость по сравнению с USB 2.0 (до 5 Гбит/с). Новая разработка имеет 9 проводов вместо первоначальных 4 (шина данных уже состоит из 4 проводов), тем не менее, этот стандарт по-прежнему поддерживает и USB 2.0 и обеспечивает пониженное энергопотребление. Благодаря этому можно использовать любую комбинацию устройств и портов USB 2.0 и USB 3.0.

USB разъем имеет 4 контакта. К контактам DATA+ и DATA- подключается витая пара (скрученные между собой два провода), а к выводам VCC (+5 В) и GND подключаются обычные провода. Затем весь кабель (все 4 провода) экранируется алюминиевой фольгой.

Ниже представлена распиновка (распайка) всех видов USB разъемов.

Виды и распиновка USB разъемов

Распайка USB кабеля по цветам:

Схема распиновки разъема USB — тип А:

*****

Распиновка USB по цветам

Юсб распиновка

  1. Назначение и общее устройство USB
  2. Распиновка-распайка разъемов USB 2.0 и 3.0
  3. Распайка-распиновка коннекторов микро- и мини-USB

В каждом компьютере и других аналогичных устройствах наиболее популярным является USB-разъем. С помощью юсб провода стало возможно подключать более 100 единиц последовательно соединенных устройств. Эти шины позволяют подключать и отключать любые приборы даже в процессе работы персонального компьютера. Практически все устройства могут заряжаться через данный разъем, поэтому нет необходимости применять дополнительные блоки питания. Распиновка USB по цветам помогает точно определить, к какому типу устройств относится та или иная шина.

Устройство и назначение USB

Первые порты этого типа появились еще в девяностых годах прошлого века. Через некоторое время эти разъемы обновились до модели USB 2.0. Скорость их работы возросла более чем в 40 раз. В настоящее время в компьютерах появился новый интерфейс USB 3.0 со скоростью, в 10 раз превышающей предыдущий вариант.

Юсб распиновка

Существуют и другие виды разъемов этого типа, известные, как micro и mini USB, применяющиеся в современных телефонах, смартфонах, планшетах. Каждая шина имеет собственную распайку или распиновку. Она может потребоваться при необходимости изготовления своими руками переходника с одного вида разъема на другой. Зная все тонкости расположения проводов, можно сделать даже зарядное устройство для мобильного телефона. Однако следует помнить, что в случае неправильного подключения устройство может быть повреждено.

Разъем USB 2.0 выполнен в виде плоского коннектора, в котором установлено четыре контакта. В зависимости от назначения он маркируется как AF (BF) и AM (BM), что соответствует обиходному названию «мама» и «папа». В мини- и микро- устройствах имеется такая же маркировка. От обычных шин они отличаются пятью контактами. Устройство USB 3.0 внешне напоминает модель 2.0, за исключением внутренней конструкции, имеющей уже девять контактов.

Распиновка-распайка разъемов USB 2.0 и 3.0

Распайка проводов в модели USB 2.0 располагается в следующем порядке:

Юсб распиновка

  1. Проводник красного цвета, к которому осуществляется подача питающ его напряжения постоянного тока со значением +5V.
  2. Проводник белого цвета, применяемый для передачи информационных данных. Он обозначается маркировкой «D-».
  3. Проводник окрашен в зеленый цвет. С его помощью также передается информация. Он маркируется как «D+».
  4. Проводник черного цвета. На н его производится подача нуля питающ его напряжения. Он носит название общ его провода и обозначается собственной меткой в виде перевернутого Т.

Расположение проводов в модели 3.0 выполнено совершенно по-другому. Четыре первых контактирующих провода полностью соответствуют разъему USB 2.0.

Юсб распиновка

Основное отличие USB 3.0 заключается в следующих проводах:

  • Проводник № 5 имеет синий цвет. По нему передается информация с отрицательным значением.
  • Проводник № 6 желтого цвета, так же как и предыдущий контакт предназначен для передачи информации, имеющей положительное значение.
  • Проводник № 7 применяется в качестве дополнительного заземления.
  • Проводник № 8 фиолетового цвета и проводник № 9 оранжевого цвета. Они выполняют функцию приема данных, соответственно, с отрицательным и положительным значением.

Распайка-распиновка коннекторов микро- и мини-USB

Коннекторы микро-USB наиболее часто применяются в планшетах и смартфонах. От стандартных шин распиновка micro usb отличаются значительно меньшими размерами и наличием пяти контактов. Они маркируются как micro-AF(BF) и micro-AM(BM), что соответствует «маме» и «папе».

Юсб распиновка

Распайка микро-USB производится в следующем порядке:

  • Контакт № 1 красного цвета. Через н его подается напряжение.
  • Контакты №№ 2 и 3 белого и зеленого цвета применяются для передачи.
  • Контакт № 4 сиреневого цвета выполняет специальные функции в отдельных моделях шин.
  • Контакт № 5 черного цвета является нулевым проводом.

Распиновка мини USB разъема по цветам выполняется, так же как и в микро-юсб коннекторах.

*****

Приводятся схемы и цвета распайки проводов для контактов USB, micro-USB и USB-B. Информация очень актуальна, так как практически все мобильные и настольные приборы и гаджеты имеют этот интерфейс как для передачи данных, так и заряда встроенного аккумулятора.

Цвета проводов для ремонта КАБЕЛЕЙ USB

Юсб распиновка

Схемы коннекторов USB 2.0

Юсб распиновка

  • А — активное, питающее устройство (компьютер, хост)
  • B — пассивное, подключаемое устройство (принтер, сканер)
  • M (male) — штекер, «папа»
  • F (female) — гнездо, «мама»

Например: USB micro-BM— штекер (M) для подключения к пассивному устройству (B); размер micro.

Распиновка разъема USB - гнёзда и штекеры

Назначение проводов в USB кабеле таково:

  • Красный VBUS (+5V, Vcc — Voltage Collector Collector) +5 Вольт постоянного напряжения относительно GND. Максимальный ток — 500 mA
  • Белый D- (-Data)
  • Зелёный D+ (+Data)
  • Чёрный GND — общий провод, «земля», «минус», 0 Вольт

Разъёмы mini и micro содержат 5 контактов:

  • Красный VBUS
  • Белый D-
  • Зелёный D+
  • ID — в разъёмах «B» не задействован; в разъёмах «A» замкнут с GND для поддержки функции «OTG»
  • Чёрный GND

Кроме прочего, в кабеле содержится (правда, не всегда) оголённый провод Shield — корпус, экран, оплётка. Этому проводу номер не присваивается.

Во всех таблицах вид разъёма дан с его внешней, рабочей стороны, а не со стороны пайки! Изолирующие детали разъёма отмечены светло-серым цветом, металлические части — тёмно-серым, а полости разъёма обозначены белым цветом.

Как распаять USB? Берём изображение лицевой части коннектора в зеркальном отображении и паяем.

Распайка штекеров USB mini и USB micro

Разъёмы mini и micro содержат 5 контактов. В разъёмах типа «B» четвёртый контакт не используется. В разъёмах типа «A» четвёртый контакт замкнут с GND. А для GND - пятый контакт.

Юсб распиновка

Просмотров. 447642 | Добавил. Maestro | Рейтинг. 4.4 / 53

*****

Распиновка -Распайка usb портов и micro-USB портов

В настоящее время все мобильные устройства и настольные электрические приборы имеют в своем арсенале порты для передачи данных. Современные гаджеты могут не только обмениваться информацией через USB или micro-USB, но и осуществлять зарядку аккумуляторов. Для того, чтобы провести грамотную распиновку контактов, для начала нужно изучить схемы и цвета распайки проводов.

Цвета проводов в кабеле USB.

Юсб распиновка

Схема коннекторов для USB 2.0

Юсб распиновка

На схеме можно увидеть несколько коннекторов, различающихся между собой по определенному признаку. К примеру, активное (питающее) устройство обозначается буквой А, а пассивное (подключаемое) устройство – буквой В. К активным относятся компьютеры и хосты, а пассивные составляют принтеры, сканеры и другие приборы. Принято также разделять коннекторы по полу: M (male) или «папа» представляет из себя штекер, а F(female) или «мама» — гнездо разъема. По размеру бывают форматы: mini, micro и без маркировки. К примеру, если встретится обозначение «USB micro-ВМ », то это значит, что штекер предназначен для подключения к пассивному устройству по формату micro.

Для распиновки гнезд и штекеров понадобятся знания о назначении проводов в USB-кабеле:

  1. по красному VBUS («плюс») проходит постоянное напряжение 5 Вольт относительно GND. Минимальное значение силы электрического тока для него равно 500 mА;
  2. белый провод подсоединяют к «минусу» (D-);
  3. зеленый провод крепится к «плюсу» (D+);
  4. черный цвет провода означает, что напряжение в нем 0 Вольт, он несет минусовой заряд и используется для заземления.

Купить компоненты для этой самоделки

В mini и micro форматах разъемы содержат по пять контактов: красный, черный, белый и зеленый провода, а также ID (который в разъемах типа А замкнут на GND, а в разъемах В – не задействован совсем).

Иногда в кабеле USB можно встретить и оголенный провод Shield. Этот провод не имеет номера.

Если в работе использовать таблицу, то разъем в ней показан с внешней (рабочей) стороны. Светло-серый цвет имеют изолирующие детали разъема, темно-серый цвет у металлических частей, а полости обозначены белым.

Для того, чтобы провести правильную распайку USB, нужно зеркально отобразить изображение лицевой части коннектора.

Разъемы у форматов mini и micro на USB состоят из пяти контактов. Поэтому четвертый контакт в разъемах типа В в работе использовать не придется. Этот контакт в разъемах типа А замыкается с GND, а для самого GND используют – пятый.

Юсб распиновка

Usb распайка версии 3.0 отличается добавлением четырех цветных проводов и дополнительного заземления. За счет этого кабель USB 3.0 заметно толще своего младшего собрата.

Юсб распиновка

Схемы подключения USB девайсов друг к другу и распайка штекеров устройств:

  • PS/2 К USB портуЮсб распиновка
  • Джойстик Defender Game Racer Turbo USB-AM Юсб распиновка
  • Распайка usb am и micro usb bm, для зарядки и передачи данных на компьютер Юсб распиновка
  • USB-OTG Юсб распиновка
  • Распайка USB SAMSUNG GALAXY TAB 2 Юсб распиновка

Автор: Виталий Петрович. Украина, Лисичанск.

Юсб разъем

Распиновка USB разъема: USB, mini-USB, micro-USB

В данной статье приведена общая информация о стандарте USB, а также распиновкаUSB разъема по цветам всех видов (USB, mini-USB, micro-USB, USB-3.0).

Разъем USB (Universal Serial Bus) – это последовательная шина универсального назначения, современный способ подсоединения внешних устройств к персональному компьютеру. Заменяет ранее используемые способы подключения (последовательный и параллельный порт, PS/2, Gameport и т.д.) для обычных видов периферийных устройств — принтеры, мыши, клавиатуры, джойстики, камеры, модемы и т.д. Также данный разъем позволяет организовывать обмен данными между компьютером и видеокамерой, карт-ридером, MP3 — плеером, внешним жестким диском.

Преимуществом USB разъема перед иными разъемами заключается в возможности подключения Plug&Play устройств без необходимости перезагрузки компьютера или ручной установке драйверов. Устройства Plug&Play могут быть подключены во время работы компьютера и в течение нескольких секунд приступить к работе.

При подключении нового устройства сначала хаб (кабельный концентратор) получает высокий уровень по линии передачи данных, которое сообщает, что появилось новое оборудование. Затем следуют следующие шаги:

  1. Хаб сообщает Хост-компьютеру о том, что было подключено новое устройство.
  2. Хост-компьютер запрашивает хаб, на какой порт было подключено устройство.
  3. После получения ответа компьютер выдает команду об активации данного порта и выполняет обнуление (сброс) шины.
  4. Концентратор формирует сигнал сброса (RESET) длительностью 10 мсек. Выходной ток питания устройства составляет 100 мА. Устройство теперь готово к работе и имеет адрес по умолчанию.

Создание USB — результат сотрудничества таких компаний как Compaq, NEC, Hewlett-Packard, Philips, Intel, Lucent и Microsoft. USB стандарт был призван заменить широко используемый последовательный порт RS-232. USB в целом облегчает работу пользователю и имеет большую пропускную способность. чем последовательный порт RS-232. Первая спецификация USB была разработана в 1995 году, как недорогой универсальный интерфейс для подсоединения внешних устройств, которые не требовали большую пропускную способность данных.

Три версии USB

Версия USB 1.1 предназначен был для обслуживания медленных периферийных устройств (Low-Speed) со скоростью передачи данных 1,5 Мбит/с и быстрых устройств (Full-Speed) со скоростью передачи данных 12 Мбит/с. USB 1.1, однако, был не в состоянии конкурировать с высокоскоростным интерфейсом, например. FireWire (IEEE 1394) от компании Apple со скоростью передачи данных до 400 Мбит/с.

В 1999 году стали задумываться о втором поколении USB, который был бы применим и для более сложных устройств (например, цифровых видеокамер). Эта новая версия, обозначаемая как USB 2.0 была выпущена 2000 году и обеспечивала максимальную скорость до 480 Мбит/с в режиме Hi-Speed и сохранила обратную совместимость с USB 1.1 (тип передачи данных: Full-Speed. Low-Speed).

Третья версия (обозначаемая также как Super-speed USB) была спроектирована в ноябре 2008 года, но, вероятно, из-за финансового кризиса ее массовое распространение было отложено вплоть до 2010. USB 3.0 имеет более чем в 10 раз большую скорость по сравнению с USB 2.0 (до 5 Гбит/с). Новая разработка имеет 9 проводов вместо первоначальных 4 (шина данных уже состоит из 4 проводов), тем не менее, этот стандарт по-прежнему поддерживает и USB 2.0 и обеспечивает пониженное энергопотребление. Благодаря этому можно использовать любую комбинацию устройств и портов USB 2.0 и USB 3.0.

USB разъем имеет 4 контакта. К контактам DATA+ и DATA- подключается витая пара (скрученные между собой два провода), а к выводам VCC (+5 В) и GND подключаются обычные провода. Затем весь кабель (все 4 провода) экранируется алюминиевой фольгой.

Ниже представлена распиновка (распайка) всех видов USB разъемов.

Виды и распиновка USB разъемов

Распайка USB кабеля по цветам:

Схема распиновки разъема USB — тип А:

*****

Микро USB-разъемы. Виды USB-разъемов, их особенности

Технологический процесс не стоит на месте. Современные модели разнообразных цифровых устройств разительно отличаются от своих более старых собратьев. Изменился не только их внешний вид и внутреннее оснащение, но и способы подсоединения к компьютерам и зарядным устройствам. Если еще лет 5-7 назад многие телефоны и даже фотоаппараты не имели такой возможности. Но на данный момент абсолютно каждый цифровой прибор может быть подключен к персональному компьютеру или ноутбуку. Телефон, проигрыватель, смартфон, планшет, видеокамера, плеер или фотоаппарат – все они оснащены разъемами, которые позволяют подсоединить их к другим устройствам.

Но, как легко заметить, разъем разъему рознь. И купленный вместе с телефоном шнур почему-то нельзя использовать совместно с вашим любимым плеером. В итоге пучок кабелей копится, вы постоянно в них путаетесь и никак не можете понять, почему нельзя было сделать так, чтобы один провод подходил для подключения всех устройств. Но, как известно, так не бывает. Хотя сейчас появился более или менее стандартный разъем, по крайней мере, для смартфонов, телефонов и планшетов. И имя ему – micro-USB. Что это за чудо и как оно работает, мы расскажем ниже.

Микро USB-разъем: что это такое?

Юсб разъем

Два самых популярных в последнее время разъема - это mini и micro-USB. Названия их говорят сами за себя. Это более маленькие и практичные разработки, которые используются на малогабаритных цифровых устройствах для экономии места и, возможно, для более изящного внешнего вида. Например, разъем микро-USB для планшета почти в 4 раза меньше, чем стандартный USB 2.0. а учитывая, что и само устройство в разы меньше персонального компьютера или даже ноутбука, такой вариант просто идеален. Но есть здесь и свои нюансы. Например, из большего никогда нельзя сделать меньшее, поэтому микро-USB разъемы нельзя будет заменить даже на mini-USB. Хотя в некоторых случаях обратный процесс допустим. Да и замена микро-USB своими руками вряд ли закончится чем-то хорошим. Уж больно ювелирная это работа. Кроме того, под словом “micro” кроется сразу несколько видов разъемов, и об этом нужно помнить. Особенно если вы пытаетесь купить новый провод. Микро-USB вашего планшета может оказаться несовместимым с разъемом на конце кабеля, который вы приобрели.

Разновидности

Микро-USB разъемы могут быть двух абсолютно разных типов. У них разные сферы применения и, соответственно, выглядят они по-разному. Первый вид называется micro-USB 2.0. тип В - он используется в устройствах по умолчанию и является внегласным стандартом для последних моделей смартфонов и планшетов, из-за этого он очень распространен и почти у каждого человека дома есть хотя бы один кабель микро-USB 2.0. типа В.

Юсб разъем

Второй вид - micro-USB 3.0 - данные разъемы на планшетах не устанавливаются, но могут встречаться на смартфонах и телефонах некоторых марок. Чаще всего их применяют для оснащения внешних жестких накопителей.

Преимущества

Основными достоинствами, которыми обладают микро-USB разъемы для планшетов, можно считать повышенную плотность и надежность крепления штекера. Но этот факт далеко не исключает возможности неполадок именно с этими компонентами. Чаще всего причиной поломки становится неаккуратность самих владельцев цифровых устройств. Резкие движения, падения планшетов и телефонов на пол или даже асфальт, особенно на ту сторону, где расположен сам разъем, попытки подправить что-то своими руками без соответствующих знаний – вот основные причины, из-за которых даже самые прочные части USB-портов выходят из строя. Но бывает, что это происходит из-за износа устройства, неправильной эксплуатации или заводского брака.

Юсб разъем

Чаще всего причиной нарушения работы становятся либо сами микро-USB разъемы, либо соседствующие и подсоединенные с ними в цепь детали. Для любого опытного мастера его замена – минутное дело, но в домашних условиях с этим сможет справиться далеко не каждый. Если же вас все-таки интересует, как можно самостоятельно починить разъем микро-USB, распиновка (или, иными словами, распайка) – процесс не самый долгий и сложный, если подойти к нему с умом и предварительным чтением соответствующей информации. Несколько советов будет приведено ниже.

Разъем микро-USB: распиновка

Как известно, с обычными портами и разъемами всё просто — вам нужно всего лишь взять изображение лицевой части их коннектора, но в зеркальном отображении, и спаять. С USB mini- и micro-видов все немного иначе. Их разъемы содержат по 5 контактов, но на разъемах типа В контакт под номером 4 не используется, а на типе А он замкнут с GND, который и занимает пятое место.

Функции «ножек» разъема micro-USB

Так как большинство современных планшетов имеют микро-USB, служащий не только для зарядки, но и для синхронизации, из-за более частого использования разъема проблемы с ним возникают чаще.

Юсб разъем

Итак, как было сказано выше, обычный микро-USB разъем имеет пять «ног». Одна плюсовая, на пять вольт, а одна минусовая. Находятся они на разных сторонах разъема и, соответственно, меньше страдают при отрыве от материнской платы. Лишь одна "нога" разъема, которая чаще других вырывается с контактной площадки, больше подвергается износу. Находится она ближе к минусовой "ноге". Если этот контакт поврежден, то зарядка устройства невозможна. То есть система может видеть блок питания, но процесс зарядки совершаться не будет.

Юсб разъем

Оставшиеся две "ножки" отвечают за синхронизацию, то есть за возможность выгружать и загружать фотографии, музыку и т.д. Они выполняют это одновременно, поэтому отрыв одной повлечет за собой прекращение работы второй.

Зная функции «ножек», вы сможете определить, из-за отхождения контактов которых у вас начались проблемы и какие из них вам нужно будет спаять, чтобы вернуть ваш планшет «в строй».

Юсб разъем

Последствия неправильной замены разъема

Некорректно припаяв микро-USB, владельцы чаще всего сталкиваются со следующими проблемами:

  1. Короткие замыкания блока питания, если они припаяли перевернутый тип.
  2. Планшет определяет зарядный шнур, но аккумулятор (АКБ) не заряжает.
  3. Аккумулятор планшета прекрасно заряжается, но при этом не синхронизируется с ноутбуком или компьютером.
  4. Планшет работает исправно, но иногда "напоминает", что вам следовало бы отнести его в мастерскую, а не паять самостоятельно (например, зарядка начинается не сразу после включения или же иногда шнур нужно вытащить и вставить снова несколько раз перед тем, как начинается зарядка).

Будущее микро-USB

Так как это одни из самых популярных на сегодняшний день портов, то, если вы научитесь менять их однажды, этот навык будет выручать вас в будущем очень часто. И пускай их не приняли за «золотой стандарт» при разработке телефонов и других цифровых устройств. И нам по-прежнему приходится иметь целую коллекцию проводов специально для ноутбука Acer, для телефона от Samsung, для iPad от Apple и фотоаппарата Nikon, но активное использование микро-разъемов дает надежду, то скоро вместо «букета» у нас на полочке будет лежать один кабель микро-USB, подходящий хотя бы к 90% техники в доме.

Юсб разъем

20 фото кошек, сделанных в правильный момент Кошки — удивительные создания, и об этом, пожалуй, знает каждый. А еще они невероятно фотогеничны и всегда умеют оказаться в правильное время в правил.

Юсб разъем

Зачем нужен крошечный карман на джинсах? Все знают, что есть крошечный карман на джинсах, но мало кто задумывался, зачем он может быть нужен. Интересно, что первоначально он был местом для хр.

Юсб разъем

Эти 10 мелочей мужчина всегда замечает в женщине Думаете, ваш мужчина ничего не смыслит в женской психологии? Это не так. От взгляда любящего вас партнера не укроется ни единая мелочь. И вот 10 вещей.

Юсб разъем

15 симптомов рака, которые женщины чаще всего игнорируют Многие признаки рака похожи на симптомы других заболеваний или состояний, поэтому их часто игнорируют. Обращайте внимание на свое тело. Если вы замети.

Юсб разъем

11 странных признаков, указывающих, что вы хороши в постели Вам тоже хочется верить в то, что вы доставляете своему романтическому партнеру удовольствие в постели? По крайней мере, вы не хотите краснеть и извин.

Юсб разъем

Наши предки спали не так, как мы. Что мы делаем неправильно? В это трудно поверить, но ученые и многие историки склоняются к мнению, что современный человек спит совсем не так, как его древние предки. Изначально.

*****

USB: виды разъемов и кабелей для смартфона

Юсб разъем

Современные пользователи редко испытывают проблемы при поиске ЗУ для своих смартфонов. Разъём сейчас почти на всех гаджетах одинаков, что очень удобно. Однако это не значит, что так было и будет всегда. Прочитайте статью о прошлом и будущем технологии USB.

Пользователям мобильных устройств в 2000-х пришлось нелегко – они были вынуждены мириться с так называемой проприетарностью. Телефоны каждого из производителей оснащались уникальными разъёмами для зарядки – как следствие, ЗУ, например, для Nokia не работало с телефоном Motorola. Доходило и до абсурда – когда для двух телефонов одного производителя (финского) приходилось искать различные зарядные устройства. Недовольство пользователей оказалось настолько сильным, что вмешаться был вынужден Европарламент.

Сейчас ситуация в корне иная: практически все производители смартфонов оснащают свои гаджеты портами под зарядные устройства одного типа. Пользователю больше не приходится покупать новое ЗУ «в довесок» к телефону.

Какие бывают разъёмы USB для смартфонов?

Кабели USB можно применять не только для передачи данных с ПК на гаджет, но и для зарядки мобильного устройства. Смартфоны способны пополнять «запасы» аккумулятора как от розетки, так и от компьютера, однако во втором случае зарядка займёт существенно больше времени. Традиционный кабель USB для смартфона с Android или с Windows Phone выглядит следующим образом:

Юсб разъем

Подобные кабели USB можно найти в различных расцветках на страницах каталога магазина GearBest .

На одном из его концов присутствует стандартный штекер USB 2.0 Type-A :

Юсб разъем

Этот штекер вставляется в USB-порт на компьютере или ноутбуке.

На втором конце провода – штекер microUSB .

Юсб разъем

Он, соответственно, вставляется в разъём микро-USB на мобильном устройстве.

Именно micro-USB 2.0 является сейчас унифицированным разъёмом: встретить его можно на смартфонах и планшетах почти всех производителей мобильной техники (за исключением Apple). Соглашение о стандартизации интерфейсов было подписано в 2011 году представителями 13-и компаний, лидирующих на мобильном рынке.

На Micro-USB выбор пал по ряду причин:

  • Разъём компактен. Его физические размеры составляют всего лишь 2×7 миллиметров – это примерно в 4 раза меньше, чем у USB 2.0 Type-A .
  • Штекер прочен – особенно если сравнивать с тонкой зарядкой Nokia.
  • Разъём способен обеспечивать высокую скорость передачи данных. Теоретически скорость передачи через Micro-USB при использовании стандарта 2.0 может достигать 480 Мбит/сек. Фактическая скорость гораздо ниже (10-12 Мбит/сек в режиме Full Speed ), однако пользователям это редко доставляет неудобства.
  • Разъём поддерживает функцию OTG. Подробнее о том, какие преимущества это даёт, расскажем позже.

Конкуренцию micro-USB в борьбе за роль стандартного разъёма мог навязать Mini-USB. Мини-штекер выглядит так:

Юсб разъем

Этот вид USB-разъёма не подошёл в качестве стандартного, и вот почему:

  • Разъём больше по размерам – пусть и ненамного. Величина его – 3×7 миллиметров.
  • Разъём достаточно хрупкий – из-за отсутствия жёстких креплений он очень быстро расшатывается. Вследствие этого передача данных через кабель становится для пользователя настоящим мучением.

В 2000-х разъём вида mini-USB можно было встретить на смартфонах производителей «второго сорта» — скажем, Philips и Alcatel . Сейчас мобильных гаджетов с мини-разъёмом на рынке не найдёшь.

Помимо тех USB-разъёмов, о которых мы упомянули (Micro-USB, Mini-USB, USB Type-A), есть и другие. Например, micro-USB стандарта 3.0 может использоваться для подключения к ПК жёстких дисков, а USB Type-B (квадратной формы) для музыкальных инструментов (в частности, MIDI-клавиатуры). К мобильной технике эти разъёмы не имеют прямого отношения (если не считать Galaxy Note 3 c USB 3.0), поэтому более подробно мы о них рассказывать не будем.

Какими бывают USB-кабели для смартфонов?

Благодаря неистощимой фантазии китайских рукодельцев пользователи мобильной техники могут купить кабели совершенно разных формаций. Например, в эпоху проприетарности невероятной популярностью пользовался такой вот «монстр»:

Юсб разъем

Да, эта зарядка подходила ко всем основным разъёмам!

Подобные «мультитулы» и сейчас есть в продаже, однако штекеров у них поубавилось. Вот зарядка 4-в-1. которую можно заказать на GearBest дешевле, чем за 200 рублей:

Юсб разъем

Эта зарядка оснащена всеми современными штекерами – Lightning, 30Pin (оба для iPhone ), microUSB, USB 3.0. Однозначно, «must-have» для пользователя!

Есть и другие любопытные варианты. Вот кабель от OATSBASF для тех, кто терпеть не может кабели:

Юсб разъем

Такой называется кабелем с функцией Stretch . Визуально он чем-то похож на игрушку Йо-Йо. Провод вытягивается на ту длину, которая необходима, а по окончании использования сматывается. Это очень удобно, потому как владельцу гаджета не приходится постоянно распутывать клубки проводов. Минус стретч-кабеля заключается в цене. по сравнению с обычными USB-кабелями на GearBest он почти вдвое дороже.

Вот ещё одно любопытное решение, предлагаемое GearBest – карманный кабель-брелок :

Юсб разъем

Этот кабель позволяет подзаряжать от компьютера два мобильных устройства одновременно (например, 5-ый Айфон и Android) и имеет очень соблазнительную цену – чуть более 100 рублей.

В отечественных магазинах и салонах пользователь, конечно же, не найдёт такого изобилия разнообразных кабелей, как на страницах каталогов GearBest и AliExpress . Кроме того, Data-оборудование в рознице стоит существенно дороже. По этим двум причинам пользователям рекомендуется заказывать USB-кабели именно из Китая.

Что такое стандарт OTG?

Наверняка многие видели такой кабель и задумывались, для чего он нужен:

Юсб разъем

Это кабель OTG ; на одном его конце — штекер micro-USB. на втором – разъём USB 2.0. «мама». С помощью такого кабеля к смартфону или планшету можно подключить USB-флэшку, но только в том случае, если само мобильное устройство поддерживает стандарт OTG .

OTG (сокращение от On-The-Go ) – это функция, предназначенная для быстрого соединения 2-х USB-устройств друг с другом, без посредничества компьютера. Подключить по OTG можно не только флэшку (хотя это, конечно, самый распространённый случай), но также, например, и компьютерную мышку, клавиатуру, внешний жёсткий диск, игровой руль, джойстик. Получится даже подсоединить смартфон к принтеру или МФУ, чтобы распечатать снимок, сделанный на камеру гаджета.

Кабели OTG для iPhone уже тоже появились, однако загрузить на «яблочное» устройство (без джейлбрейка) с внешнего носителя получается только фото и видео – и то лишь тогда, когда корневые папки на флэшке и сами фотографии имеют «правильные» названия.

Полного перечня смартфонов, поддерживающих функцию OTG. нет – просто потому, что наличием этого стандарта способны похвастать почти все современные гаджеты и список был бы огромен. Тем не менее, покупателю, намеревающемуся подключать к девайсу мышь или флэшку, стоит осведомиться у консультанта салона-магазина о поддержке OTG до того, как отдавать деньги – «на всякий пожарный».

USB Type-C: в чём преимущества?

Переход с micro-USB на USB Type-C – это новый тренд рынка мобильной электроники! Производители активно осваивают технологию и оснащают свои флагманские модели усовершенствованными разъёмами для зарядки и передачи данных. USB Type-C долго ждал «в тени»: разъём был создан ещё в 2013 году, однако только в 2016-м лидеры рынка обратили на него внимание.

Выглядит USB Type-C так:

Юсб разъем

В чём же заключаются преимущества Type-C перед привычным всем micro-USB ?

  • Высокая скорость передачи данных. Пропускная способность Type-C равняется 10 Гб/сек (!). Но это только пропускная способность. в действительности на такую скорость смогут рассчитывать лишь владельцы смартфонов со стандартом USB 3.1 – например, Nexus 6P и 5X. Если гаджет использует стандарт USB 3.0. скорость окажется на отметке примерно в 5 Гб/сек; при USB 2.0 передача данных будет происходить существенно медленнее.
  • Быстрая зарядка . Продолжительность процедуры зарядки смартфона зависит от потенциального количества Вт, которые поставляются разъёмом. USB стандарта 2.0 способно подавать всего 2.5 Вт – оттого зарядка и длится часы. Разъём USB Type-C обеспечивает 100 Вт – то есть в 40 раз (!) больше. Любопытно то, что передача тока может происходить в обе стороны – как к хосту, так и от него.
  • Симметричность коннектора. Если у коннектора micro-USB есть верх и низ, то коннектор Type-C симметричен. Какой стороной его вставлять в разъём, значения не имеет. С этой точки зрения технология USB Type-C похожа на Lightning от Apple.

Достоинством Type-C является также небольшая величина разъёма – всего лишь 8.4×2.6 миллиметра. По этому критерию технологии micro-USB и USB Type-C схожи.

У USB Type-C есть и недостатки, один из которых более чем существенный. Из-за нерегулируемой работы коннектора зарядка запросто может «поджарить» мобильное устройство. Такая вероятность не является чисто теоретической – возгорания случались и на практике. Именно по этой причине распространение неоригинальных, «кустарных» кабелей и зарядок USB Type-C запрещено.

Заключение

Несмотря на возрастающую популярность USB Type-C, стандартный разъём USB в ближайшее время точно не «канет в Лету». Это не просто субъективное предположение, об этом говорит Дж. Рэйвенкрафт, президент компании USB Implementers Forum. поддерживающей и развивающей технологию USB. Рэйвенкрафт называет совершенно сумасшедшую цифру – 20 миллиардов ; по его данным именно столько устройств в мире сейчас оснащено стандартными разъёмами USB-A.

Из-за подобной массовости новую технологию будут вводить эволюционно, а не революционно – чтобы пользователи имели возможность самостоятельно убедиться в преимуществах Type-C и принять решение об отказе от стандартного разъёма. При этом Рэйвенкрафт допускает, что, возможно, полного замещения USB-A не произойдёт никогда.

Читайте также

*****

Приводятся схемы и цвета распайки проводов для контактов USB, micro-USB и USB-B. Информация очень актуальна, так как практически все мобильные и настольные приборы и гаджеты имеют этот интерфейс как для передачи данных, так и заряда встроенного аккумулятора.

Цвета проводов для ремонта КАБЕЛЕЙ USB

Юсб разъем

Схемы коннекторов USB 2.0

Юсб разъем

  • А — активное, питающее устройство (компьютер, хост)
  • B — пассивное, подключаемое устройство (принтер, сканер)
  • M (male) — штекер, «папа»
  • F (female) — гнездо, «мама»

Например: USB micro-BM— штекер (M) для подключения к пассивному устройству (B); размер micro.

Распиновка разъема USB - гнёзда и штекеры

Назначение проводов в USB кабеле таково:

  • Красный VBUS (+5V, Vcc — Voltage Collector Collector) +5 Вольт постоянного напряжения относительно GND. Максимальный ток — 500 mA
  • Белый D- (-Data)
  • Зелёный D+ (+Data)
  • Чёрный GND — общий провод, «земля», «минус», 0 Вольт

Разъёмы mini и micro содержат 5 контактов:

  • Красный VBUS
  • Белый D-
  • Зелёный D+
  • ID — в разъёмах «B» не задействован; в разъёмах «A» замкнут с GND для поддержки функции «OTG»
  • Чёрный GND

Кроме прочего, в кабеле содержится (правда, не всегда) оголённый провод Shield — корпус, экран, оплётка. Этому проводу номер не присваивается.

Во всех таблицах вид разъёма дан с его внешней, рабочей стороны, а не со стороны пайки! Изолирующие детали разъёма отмечены светло-серым цветом, металлические части — тёмно-серым, а полости разъёма обозначены белым цветом.

Как распаять USB? Берём изображение лицевой части коннектора в зеркальном отображении и паяем.

Распайка штекеров USB mini и USB micro

Разъёмы mini и micro содержат 5 контактов. В разъёмах типа «B» четвёртый контакт не используется. В разъёмах типа «A» четвёртый контакт замкнут с GND. А для GND - пятый контакт.

Юсб разъем

Просмотров. 447599 | Добавил. Maestro | Рейтинг. 4.4 / 53

*****

автор: admin | 22 августа 2015 | Просмотров: 67562

Но, как легко заметить, разъем разъему рознь. И купленный вместе с телефоном шнур почему-то нельзя использовать совместно с вашим любимым плеером. В итоге пучок кабелей копится, вы постоянно в них путаетесь и никак не можете понять, почему нельзя было сделать так, чтобы один провод подходил для подключения всех устройств. Но, как известно, так не бывает. Хотя сейчас появился более или менее стандартный разъем, по крайней мере, для смартфонов, телефонов и планшетов. И имя ему – micro-USB. Что это за чудо и как оно работает, мы расскажем ниже.

Микро USB-разъем: что это такое?

Юсб разъем

Два самых популярных в последнее время разъема - это mini и micro-USB. Названия их говорят сами за себя. Это более маленькие и практичные разработки, которые используются на малогабаритных цифровых устройствах для экономии места и, возможно, для более изящного внешнего вида. Например, разъем микро-USB для планшета почти в 4 раза меньше, чем стандартный USB 2.0. а учитывая, что и само устройство в разы меньше персонального компьютера или даже ноутбука, такой вариант просто идеален. Но есть здесь и свои нюансы. Например, из большего никогда нельзя сделать меньшее, поэтому микро-USB разъемы нельзя будет заменить даже на mini-USB. Хотя в некоторых случаях обратный процесс допустим. Да и замена микро-USB своими руками вряд ли закончится чем-то хорошим. Уж больно ювелирная это работа. Кроме того, под словом “micro” кроется сразу несколько видов разъемов, и об этом нужно помнить. Особенно если вы пытаетесь купить новый провод. Микро-USB вашего планшета может оказаться несовместимым с разъемом на конце кабеля, который вы приобрели.

Разновидности

Микро-USB разъемы могут быть двух абсолютно разных типов. У них разные сферы применения и, соответственно, выглядят они по-разному. Первый вид называется micro-USB 2.0. тип В - он используется в устройствах по умолчанию и является внегласным стандартом для последних моделей смартфонов и планшетов, из-за этого он очень распространен и почти у каждого человека дома есть хотя бы один кабель микро-USB 2.0. типа В.

Юсб разъем

Второй вид - micro-USB 3.0 - данные разъемы на планшетах не устанавливаются, но могут встречаться на смартфонах и телефонах некоторых марок. Чаще всего их применяют для оснащения внешних жестких накопителей.

Преимущества

Основными достоинствами, которыми обладают микро-USB разъемы для планшетов, можно считать повышенную плотность и надежность крепления штекера. Но этот факт далеко не исключает возможности неполадок именно с этими компонентами. Чаще всего причиной поломки становится неаккуратность самих владельцев цифровых устройств. Резкие движения, падения планшетов и телефонов на пол или даже асфальт, особенно на ту сторону, где расположен сам разъем, попытки подправить что-то своими руками без соответствующих знаний – вот основные причины, из-за которых даже самые прочные части USB-портов выходят из строя. Но бывает, что это происходит из-за износа устройства, неправильной эксплуатации или заводского брака.

Юсб разъем

Чаще всего причиной нарушения работы становятся либо сами микро-USB разъемы, либо соседствующие и подсоединенные с ними в цепь детали. Для любого опытного мастера его замена – минутное дело, но в домашних условиях с этим сможет справиться далеко не каждый. Если же вас все-таки интересует, как можно самостоятельно починить разъем микро-USB, распиновка (или, иными словами, распайка) – процесс не самый долгий и сложный, если подойти к нему с умом и предварительным чтением соответствующей информации. Несколько советов будет приведено ниже.

Разъем микро-USB: распиновка

Как известно, с обычными портами и разъемами всё просто — вам нужно всего лишь взять изображение лицевой части их коннектора, но в зеркальном отображении, и спаять. С USB mini- и micro-видов все немного иначе. Их разъемы содержат по 5 контактов, но на разъемах типа В контакт под номером 4 не используется, а на типе А он замкнут с GND, который и занимает пятое место.

Функции «ножек» разъема micro-USB

Так как большинство современных планшетов имеют микро-USB, служащий не только для зарядки, но и для синхронизации, из-за более частого использования разъема проблемы с ним возникают чаще.

Юсб разъем

Итак, как было сказано выше, обычный микро-USB разъем имеет пять «ног». Одна плюсовая, на пять вольт, а одна минусовая. Находятся они на разных сторонах разъема и, соответственно, меньше страдают при отрыве от материнской платы. Лишь одна "нога" разъема, которая чаще других вырывается с контактной площадки, больше подвергается износу. Находится она ближе к минусовой "ноге". Если этот контакт поврежден, то зарядка устройства невозможна. То есть система может видеть блок питания, но процесс зарядки совершаться не будет.

Юсб разъем

Оставшиеся две "ножки" отвечают за синхронизацию, то есть за возможность выгружать и загружать фотографии, музыку и т.д. Они выполняют это одновременно, поэтому отрыв одной повлечет за собой прекращение работы второй.

Зная функции «ножек», вы сможете определить, из-за отхождения контактов которых у вас начались проблемы и какие из них вам нужно будет спаять, чтобы вернуть ваш планшет «в строй».

Юсб разъем

Последствия неправильной замены разъема

Некорректно припаяв микро-USB, владельцы чаще всего сталкиваются со следующими проблемами:

  1. Короткие замыкания блока питания, если они припаялиперевернутый тип.
  2. Планшет определяет зарядный шнур, но аккумулятор (АКБ) незаряжает.
  3. Аккумулятор планшета прекрасно заряжается, но при этом несинхронизируется с ноутбуком или компьютером.
  4. Планшет работает исправно, но иногда"напоминает", что вам следовало бы отнести его в мастерскую, ане паять самостоятельно (например, зарядка начинается не сразу послевключения или же иногда шнур нужно вытащить и вставить снова несколько разперед тем, как начинается зарядка).

Будущее микро-USB

Так как это одни из самых популярных на сегодняшний день портов, то, если вы научитесь менять их однажды, этот навык будет выручать вас в будущем очень часто. И пускай их не приняли за «золотой стандарт» при разработке телефонов и других цифровых устройств. И нам по-прежнему приходится иметь целую коллекцию проводов специально для ноутбука Acer, для телефона от Samsung, для iPad от Apple и фотоаппарата Nikon, но активное использование микро-разъемов дает надежду, то скоро вместо «букета» у нас на полочке будет лежать один кабель микро-USB, подходящий хотя бы к 90% техники в доме.

Какие бывают разъемы и штекеры USB

Юсб разъемВ связи с тем, что разъемов USB существует достаточно много, часто происходит путаница между ними. Порой, после покупки кабеля наступает волна разочарования, ведь может оказаться, что штекер купленного провода не подходит к устройству. Поэтому данной статье я постараюсь рассказать, какие виды разъемы бывают у USB-шнуров.

Несмотря на то, что информации по этой теме в Интернете полно, обычно она затрагивает вопросы разработки, дает даты утверждения и введения в эксплуатацию, особенности конструкции и распайку контактов. В общем, приводится больше справочная информация, которая для конечного потребителя обычно не представляет особого интереса. Я же постараюсь рассмотреть разъемы с бытовой точки зрения – где они используются, их преимущества и недостатки, отличия и особенности.

Версии USB. Чем отличается USB 2.0 от USB 3.0

Для начала кратко общие сведения.USB-устройства бывают версий трех версий – 1.1, 2.0 и 3.0. Первая уже почти не используется, так как обеспечивает слишком низкую скорость передачи данных (12 Мбит – примерно 1,2 Мбайт/с) и может применяться исключительно для совместимости с привередливым железками. Вторая версия сейчас занимает господствующее положение. Большинство устройств, продающихся в магазинах и используемых в настоящее время, имеют поддержку второй версии. Она обеспечивает пропускную способность 480 Мбит/с, то есть скорость копирования теоретически должна быть на уровне 48 Мбайт/с. Однако из-за конструктивных особенностей и не совсем идеальной реализации на практике скорость редко превышает 30-33 Мбайт/с. Большинство внешних винчестеров умеют читать со скоростью в 3-4 раза больше. То есть этот разъем является узким горлышком, тормозящим работу современных накопителей. Для мышек, клавиатур и т. п. скорость роли не играет.

Третья версия раскрашена в синий цвет, означающий принадлежность к последнему поколению. Пропускная способность равна 5 Гбит/с, что может дать 500 Мбайт/с. Современные винчестеры имеют скорость около 150-170 Мбайт/с, то есть, третья версия USB сможет обеспечить большой запас по скорости на ближайшие годы.

Совместимость разных версий USB.

Несколько слов про совместимость. Версии 1.1 и 2.0 конструктивно полностью совместимы между собой. Если одна из соединяемых сторон – старой версии, то работа будет вестись на пониженной скорости, а операционная система выведет сообщение “Устройство может работать быстрее”, которое означает, что имеется быстрый порт USB 2.0 в компьютере, а устройство, которое в него втыкается, медленное – версии 1.1.

А вот с совместимостью USB версий 2.0 и 3.0 не все так однозначно. Любое устройство или шнур USB 2.0 можно подключить к синему порту третьей версии. А вот наоборот сделать не получится. Современные кабели и устройства с USB 3.0 отличаются от привычных разъемов дополнительными контактами, позволяющими увеличить пропускную способность интерфейса, поэтому подключить их в старый порт не получится (исключение составляет только тип A).

Питание USB

В любом USB разъеме подается напряжение 5 Вольт, а ток не может превышать 0,5 Ампера (для USB 3.0 – 0,9 Ампера). На практике это означает, что максимальная мощность подключаемого устройства может быть не более 2,5 Ватт (4,5 для USB 3.0). Поэтому при подключении маломощных и портативных устройств – плееров, телефонов, флэшек и карт памяти – проблем не будет. А вот вся крупногабаритная и массивная техника имеет внешнее питание от сети.

А теперь перейдем к видам разъемов. Рассматривать совсем экзотические варианты я не буду, а лишь расскажу о самых ходовых и частоупотребляемых штекерах. В скобках будет указана принадлежность в определенной версии USB.

USB тип A (USB 2.0)

Юсб разъемЭто самый распространенный и самый узнаваемый разъем из ныне существующих.Большинство устройств, подключаемых по USB, имеют именно его. Мышки, флэшки, клавиатуры, камеры и многое другое – все они оснащены USB типа A, который берет свое начало еще в 90-х. Одним из самых главных преимуществ данного порта является надежность. Он может пережить достаточно большое количество подключений, не разваливается и действительно по достоинству заслужил стать самым распространенным средством подключения всего, чего только можно. Несмотря на прямоугольную форму, обратной стороной его не воткнуть,присутствует “защита от дурака”. Однако для портативных устройств он не подходит, так как имеет достаточно большие габариты, что в конце концов привело к появлению модификаций меньших размеров.

USB тип B (USB 2.0)

Юсб разъемВторой тип USB – снискал гораздо меньшую славу, нежели сородич. В отличие от штекеров типа А, имеющих прямоугольную форму, все модификации типа B (в том числе и Mini и Micro – см. ниже) обычно имеют или квадратную, или трапециевидную форму. Обычный, полноразмерный тип B – единственный представитель, имеющий квадратную форму. По размерам он достаточно большой и по этой причине применяется в различной периферии и крупногабаритных стационарных устройствах – принтерах, сканерах, иногда ADSL-модемах. Что интересно, производители принтеров редко комплектуют таким кабелем свои изделия, поэтому шнур к печатающему устройству или МФУ приходится приобретать отдельно.

Mini USB Тип B (USB 2.0)

Юсб разъемПоявление огромного количества миниатюрных устройств привело к появлению крошечных разъемов USB. А по истине массовым Mini USB тип B стал с появлением переносных винчестеров, в которых он широко применяется. Разъем имеет пять контактов, а не 4 как у “взрослых штекеров”, правда один из них не используется. К сожалению, миниатюризация негативно сказалась на надежности. Несмотря на большой ресурс, через некоторое время Mini USB расшатывается и начинает болтаться, хотя из порта не вываливается. В настоящее время продолжает активно использоваться в плеерах, портативных винчестерах, кардридерах и другой технике небольших габаритов. Интересно, что вторая модификация (тип A) почти не применяется, вы с трудом найдете такой шнур в продаже. Постепенно начинает вытесняться более совершенной модификацией Micro USB.

Micro USB тип B (USB 2.0)

Юсб разъемДоработанный вариант предыдущего разъема. Имеет совсем миниатюрные размеры, вследствие чего применяется производителями в современной технике, которая отличается небольшой толщиной. Кроме того, улучшено крепление, штекер сидит очень плотно и не вываливается. В 2011 году данный разъем был утвержден как единый стандарт для зарядки для телефонов, смартфонов, планшетов, плееров и другой портативной электроники. Поэтому, имея у себя всего один шнур, можно прокормить весь “электронный зоопарк”. Стандарт продолжает набирать обороты, можно надеяться, что через год-другой почти все новые устройства будут оснащены единым разъемом. Как и в предыдущем случае, тип А почти не применяется.

USB тип A (USB 3.0)

Юсб разъемНовый стандарт USB, имеющий значительно более высокую пропускную способность. Появление дополнительных контактов привело к изменению внешнего вида почти всех USB-штекеров 3.0. Несмотря на это, тип A внешне остался неизменным, лишь синий цвет сердцевины выдает в нем новичка. Это означает, что сохранена обратная совместимость. Устройство USB 3.0 можно подключить в старый порт USB 2.0 и наоборот. В этом главное отличие от остальных разъемов USB 3.0. Такие порты можно встретить в современных компьютерах или ноутбуках.

USB тип B (USB 3.0)

Юсб разъемПо аналогии с предыдущей версией данный тип используется в средней и крупной периферии и устройства, требующих высокой производительности – NAS, стационарных жестких дисках. Разъем сильно модифицирован и подключить его к USB 2.0 не выйдет. В продаже такие шнуры тоже встретишь не часто (в противоположность предыдущему). Воткнуть такой разъем в USB 2.0 тип B уже не выйдет - верхняя часть будет мешать.

Micro USB (USB 3.0)

Юсб разъемЭтот разъем продолжатель традиций “классического” Micro USB. Он обладает теми же качествами – компактность, надежность, хорошее соединение, но при этом имеет и высокую скорость передачи данных. Поэтому используется в основном в новых внешних сверхскоростных жестких дисках и SSD. Становится все более популярным, поэтому чтобы не носить с внешним винчестером и провод, можно купить дополнительный кабель в любом магазине. Основная часть разъема полностью копирует Micro USB второй ревизии

Главное не перепутать - отличие Micro USB и Mini USB.

Главная путаница, возникающая у пользователей, происходит между Mini USB и Micro USB, которые действительно немного похожи. Первый имеет чуть большие размеры, а второй специальные защелки на задней стороне. Именно по защелкам вы всегда можете отличить эти два разъема. В остальном они идентичны. А поскольку устройств и с тем, и с другим очень много, лучше иметь оба кабеля – тогда с подключением любой современной портативной техники проблем не будет.

Юсб разъем

Слева Mini USB, справа Micro USB.
Mini USB значительно толще, что не позволяет использовать
его в компактных тонких устройствах.
Micro USB легко узнать по двум зазубринкам,
крепко держащих штекер при подключении.

Юсб разъем

Три брата одного семейства.
Mini USB и Micro USB значительно тоньше обычного.
С другой стороны "крохи" проигрывают
в надежности старшему товарищу.

Другие новости по теме:

Энергосберегающие лампы мощность таблица

Мощность энергосберегающих ламп (таблица). Сравнение энергосберегающих ламп и ламп накаливания

October 12, 2016

Повышение стоимости электроэнергии приводит к необходимости поиска путей снижения ее расхода. Значительная ее часть тратится на освещение, где в качестве источника света длительное время преобладала лампа накаливания. Сейчас появились более экономичные источники света. Здесь главным показателем является мощность энергосберегающих ламп. Таблица их сравнения с обычными лампами приводится в рекламах или в сравнительных характеристиках.

Лампа накаливания состоит из герметичной колбы, заполненной инертным газом, с вольфрамовой спиралью внутри. При прохождении через нее электрического тока образуется свечение. До 90% электроэнергии здесь уходит в тепло. При этом она недолго служит и имеет небольшую световую мощность.

Светоотдача и цветопередача лампы накаливания была увеличена путем добавления к инертным газам паров галогенов. При этом ее принцип действия остался прежним, а потребляемая мощность снизилась на 40%.

Люминесцентные лампы

В качестве альтернативного источника света уже с давних пор применяется люминесцентная лампа (ЛЛ), КПД которой составляет 70%. Она состоит из герметичной стеклянной трубки, заполненной инертным газом и парами ртути. Внутри на поверхность стекла нанесен слой люминофора, который начинает светиться при зажигании лампы от пускорегулирующего устройства. В быту применение ЛЛ не очень удобно, в результате чего их сделали более компактными, поместив пусковое устройство внутрь цоколя. За счет этого лампа может работать вместе со стандартными патронами. В результате ее можно установить вместо обычной лампы накаливания без переделки светильника, что является достоинством. Здесь важно правильно определить, на какое напряжение она рассчитана.

Компактную люминесцентную лампу называют энергосберегающей (ЭСЛ) и она стала широко применяться.

Характеристики энергосберегающих ламп

Эффективность всех типов ламп оценивается по следующим показателям.

  1. Мощность - количество электроэнергии, потребляемой в течение одного часа, Вт.
  2. Световая эффективность - количество света, приходящегося на 1 затраченный ватт, Лм/Вт. Мощность светового потока энергосберегающих ламп в 5 раз больше, чем у стандартных источников света.
  3. Индекс цветопередачи - уровень соответствия между кажущимся и естественным цветами освещаемого тела %.

Энергосберегающие лампы мощность таблица

Энергосберегающие лампы: виды и мощность

Люминесцентные лампы на первых порах создавались без стандартов, поскольку их использовали преимущественно в качестве световых реклам, где каждое изделие отличалось от других. Их применение в качестве осветительных приборов привело к необходимости группировки по характеристикам, чтобы можно было подобрать к соответствующей электропроводке или светильнику. Основные свойства ламп можно определить по маркировке.Энергосберегающие лампы мощность таблица

Первая буква отечественной маркировки отражает цвет: Б - белый, У - универсальный, Д - дневной, Ц - улучшенная цветопередача и др.

В международной маркировке указывается код цветности, где первая цифра отражает индекс цветопередачи (для дома он должен быть равным 8), а остальные две - цветовая температура в сотнях градусов (для дома применяются 827, 830, 836).

Цоколи обозначаются E40 (для мощных ламп), E27 (стандартный), E14. (меньшего диаметра - 14 мм). Энергосберегающие лампы E14 обозначают с диаметром цоколя 14 мм.Энергосберегающие лампы мощность таблица

Для ЭСЛ часто применяют штырьковые цоколи: 2D, G23, 2G7, GU и др.

Мощность указывается в ваттах перед буквой W. Распространенной является лампа энергосберегающая 11w с винтовыми и штырьковыми цоколями.Энергосберегающие лампы мощность таблица

ЭСЛ с плавным включением обозначаются RS.

Напряжение лампы указывается в вольтах: 12 В, 126 В, 220 В.

На маркировке ЭСЛ обычно указываются все основные параметры. У некоторых изготовителей может быть другое расположение, но разобраться здесь легко.

Светодиодные лампы

Еще одним новым энергосберегающим источником освещения стал светодиодный светильник, создавший настоящий прорыв в энергоэффективности. Он позволяет еще больше снизить энергопотребление, а также улучшить светоотдачу, повысить срок эксплуатации и улучшить пожаробезопасность. Все эти качества обеспечивает встроенная матрица, представляющая собой соединенные последовательно светодиоды. Интенсивность света зависит от их количества.

Сравнение энергосберегающих ламп и ламп накаливания

Традиционно лампы выбираются по мощности, но сейчас правильней будет их оценка по световому потоку, поскольку освещенность помещения зависит от него.Энергосберегающие лампы мощность таблица

Потребитель привык оценивать освещенность по мощности ламп накаливания. Поэтому для него удобно оценивать мощность энергосберегающих ламп (таблица) по равной освещенности, создаваемой разными типами источников света.Энергосберегающие лампы мощность таблица

В таблице наглядно представлена зависимость потребляемой мощности от типа источника света. Здесь очевидно, что ЭСЛ имеют значительно меньшую мощность при одинаковой яркости с лампой накаливания. Однако, у разных производителей яркость может существенно отличаться от заявленной. Кроме того, количество света зависит от объема колбы: чем он меньше, тем ниже световой поток. Выбирая в магазине ЭСЛ, ее следует оценивать по заявленной характеристике, размеру колбы и вносить поправку в сторону увеличения запаса. Кроме того, нужно учитывать то, что лампа накаливания создает равномерное освещение во все стороны, а у светодиодной направленный поток. Если на ней установлен рассеиватель, он забирает часть мощности.

Немаловажное значение имеет спектр лампы. С увеличением яркости снижается расход мощности на создание одинакового светового потока.

Энергосберегающие лампы выбираются по характеристикам. Проще всего оценить необходимую мощность энергосберегающих ламп. Таблица сравнения с другими типами ламп есть в любом магазине. Мощность ЭСЛ должна быть в 5 раз меньше, чем у лампы накаливания. Например, вместо 100-ваттной стандартной лампы может быть использована лампа энергосберегающая 20вт.Энергосберегающие лампы мощность таблица

Световой спектр всех лампочек должен быть одного тона. В жилых комнатах предпочтительны мягкие тона (теплое свечение).

Размер и форма лампы зависит, прежде всего, от типа патрона и допустимых габаритов светильника. Самые дешевые лампочки имеют U-образную форму, а спиралевидные стоят дороже. Стандартные размеры обычно подходят для больших плафонов люстр или торшеров. Для маленьких колпаков бра выбираются компактные энергосберегающие лампы Е14.

Иногда новые ЭСЛ моргают, что может быть связано с наличием подсветки в выключателе. Тогда следует удалить из него индикатор или приобрести светодиодную или галогенную лампу. От некачественного товара нужно сразу отказаться, а приобрести изделие гарантированного качества, несмотря на более высокую цену.

Регулирование яркости стандартных ламп производится изменением мощности. При ее снижении до величины ПД (порога диммирования) происходит отключение лампочки. У всех типов ламп, кроме люминесцентных, ПД близок к нулю и проблем с регулированием освещенности нет.

Диммирование ЭСЛ

Для ЭСЛ горение поддерживается при мощности не ниже 10% от номинала, но для запуска диммер нужно установить на уровень не менее 30%, а после включения лампы его можно снижать.

Целесообразно применять регуляторы яркости на симисторах, без выпрямления тока, что дает возможность сэкономить на отсутствии потерь мощности от диодных мостов. Несмотря на это, диммер является дополнительной нагрузкой. Кроме того, от "холодных запусков" люминесцентные лампы быстрей выходят из строя. Глубина диммирования у обычных ламп очень низкая, а для ее расширения и обеспечения необходимого запаса прочности следует покупать специальные дорогие лампы, имеющие специальную электронную начинку.

Диммирование светодиодных ламп

Светодиодная лампа изменяет яркость в зависимости от величины проходящего тока. Для нее существует оптимальный режим, при котором светоотдача максимальная. Здесь нужно учитывать, что при изменении мощности соответственно меняется оттенок свечения. Чтобы он оставался прежним, применяются диммируемые LED-лампы и регуляторы яркости, поддерживающие постоянную амплитуду тока с изменением шага импульсного тока. Естественно, что это отражается на увеличении цены.

Производители стараются выпускать продукцию, максимально удовлетворяющую запросам потребителей. Компания Philips выпустила модели ламп, нормально работающие с обычными диммерами.

Заключение

Энергосберегающие лампы с гарантированным качеством соответствуют заявленным параметрам и обеспечивают экономию электричества при правильной эксплуатации. Можно легко выбрать мощность энергосберегающих ламп, таблица соответствия которых типовым лампам накаливания везде прилагается для сравнения. Для обеспечения возможности управления освещенностью помещений следует применять диммируемые лампы и совместимые с ними регуляторы яркости.

Энергосберегающие лампы мощность таблица

10 очаровательных звездных детей, которые сегодня выглядят совсем иначе Время летит, и однажды маленькие знаменитости становятся взрослыми личностями, которых уже не узнать. Миловидные мальчишки и девчонки превращаются в с.

Энергосберегающие лампы мощность таблица

Топ-10 разорившихся звезд Оказывается, иногда даже самая громкая слава заканчивается провалом, как в случае с этими знаменитостями.

Энергосберегающие лампы мощность таблица

Что форма носа может сказать о вашей личности? Многие эксперты считают, что, посмотрев на нос, можно многое сказать о личности человека. Поэтому при первой встрече обратите внимание на нос незнаком.

Энергосберегающие лампы мощность таблица

15 симптомов рака, которые женщины чаще всего игнорируют Многие признаки рака похожи на симптомы других заболеваний или состояний, поэтому их часто игнорируют. Обращайте внимание на свое тело. Если вы замети.

Энергосберегающие лампы мощность таблица

Как выглядеть моложе: лучшие стрижки для тех, кому за 30, 40, 50, 60 Девушки в 20 лет не волнуются о форме и длине прически. Кажется, молодость создана для экспериментов над внешностью и дерзких локонов. Однако уже посл.

Энергосберегающие лампы мощность таблица

Непростительные ошибки в фильмах, которых вы, вероятно, никогда не замечали Наверное, найдется очень мало людей, которые бы не любили смотреть фильмы. Однако даже в лучшем кино встречаются ошибки, которые могут заметить зрител.

*****

Энергосберегающие лампы — таблица мощности

Принцип работы

Популярные в последнее время энергосберегающие лампы одно из лучших за последнее время изобретений. Компактные в своих размерах не требующие стартера для запуска освещения, работающие без звука, простые в подключении (резьбовой цоколь элементарно устанавливается в осветительное оборудование), экономящие электроэнергию на 80 %, надежные, вот часть основных достоинств этих приборов.

Энергосберегающие лампы мощность таблицаПринцип работы энергосберегающей люминесцентной лампы заключается в ней содержание паров ртутного вещества, газов аргона, неона, иногда криптона. Когда электроэнергия поступает в лампу, нагревается катод, от которого начинает излучаться электроны. Они ионизируют газовую смесь до получения плазмы, излучающую ультрафиолетовый свет, невидимый для человеческого глаза. За счет этого света освещается люминофор, покрывающий стенки трубки и в результате, люминофор выдает привычный видимый свет.

Основные характеристики

Энергосберегающие лампы мощность таблицаВажнейшей отличительной характеристикой энергосберегающих ламп от других – это небольшое потребление мощности. Вся мощность, которую они получают, преобразуется в свет. Мощность таких лампочек 3 – 85 Вт.

Таблица мощности энергосберегающих ламп

Нижеприведенная таблица показывает соотношения энергосберегающей лампы и лампы накаливания: цифры – средний показатель указывает на то, что одинаковый свет подают лампы, с разной мощностью (разница приблизительно в 5 раз). Так, например лампочка накаливания в 100 Ватт работает так же как энергосберегающая в 20 Ватт

Световой поток

Энергосберегающие лампы мощность таблицаЭффективность работы лампы кроме этого определяет еще одна важная характерная особенность энерголамп – световое движение, с единицей измерения лм (люмен). От него зависит, насколько ярко светит прибор. Глаза человека не воспринимают даже самого мощного ультрафиолетового или инфракрасного излучений.

Тип цоколя

Энергосберегающие лампы мощность таблицаЦоколь — важнейшая часть и особенность энергосберегающих ламп. При ее покупке следует рассмотреть цоколь, он должен соответствовать патрону.

На рынке представлены цоколи различных марок: штырьковые и резьбовые, с уплотненным контактом и нестандартные. Нижеприведенная таблица дает общие сведения о типах цоколей.

Световая температура

Энергосберегающие лампы мощность таблицаК качественным параметрам относится цветовая температура (измеряется с помощью шкалы температуры Кельвина (обозначается «К»)), которая определяет естественность (белизны) освещенности, исходящей от лампы.

Различают следующие цветовые температуры:

  • тепло-белая (менее 3000 К),
  • нейтрально-белая (от 3000 до 5000 К)
  • дневная белую (более 5000 К).

Энергосберегающие лампы мощность таблицаДля жилых помещений лучше пользоваться лампами с теплыми оттенками. Они расслабляют и успокаивают. В офисных помещениях лучше подойдут холодные тона. Натуральной и наиболее приятной для человека считается температура цвета от 2800 до 3500 К.

Световая отдача

Энергосберегающие лампы мощность таблицаВ вопросе экономии энергии основным параметром производительности электричества считается световая отдача, измеряющаяся в лм/Вт. Через этот показатель устанавливается количество света вырабатываемого устройством.

Энергосберегающие лампы мощность таблица

Максимальный уровень световой отдачи равен 683 лм/Вт. Ранее отдача равнялась 10-15 лм/Вт, а сейчас – 100 лм/Вт.

Уровень освещенности

Показатель, который определяет освещенность определенной поверхности, называется уровнем освещенности (измеряется в лк (люкс)). Нормой освещенности рабочей поверхности в России 200 лк, В Европе равняется 800 лк.

Индекс цветопередачи

Энергосберегающие лампы мощность таблицаИндексом цветопередачи определяется цифра естественной передачи тона освещаемых предметов. Цветопередача лампочек зависит от спектрального излучения. Лампе с абсолютно правильной передачей цветового спектра предметов присваивается индекс Ra. Уменьшение показателя Ra, указывает на ухудшение цветопередающих свойств.

Срок работы

Энергосберегающие лампы мощность таблицаК эксплуатационным характеристикам относится продолжительность работы лампы, быстрота включения и их количество (гарантированных), конструктивные параметры. Эти характерные особенности показывают затраты на использование, с помощью которых определяется выгода покупки лампы.

Маркировка энергосберегающих ламп

Энергосберегающие лампы мощность таблицаПеред покупкой энергосберегающей лампы стоит обратить внимание на маркировку, указанную на упаковке. Российские производители, следуя правовым стандартам, в качестве маркировки люминесцентных ламп используют букву, зарубежные производители пользуются числовыми значениями. Нижеприведенная таблица показывает маркировки отечественных и зарубежных ламп:

Схема работы энергосберегающей лампы

Энергосберегающие лампы мощность таблицаОсновная часть энергосберегающих ламп это колба, внутри которой с обеих сторон впаяны спирали. Их покрывают слоем оксида, что бы создать термоэлектронную эмиссию (когда подается напряжение, начинается разогрев спиралей до нужной температуры, от чего происходит появление электронов). В колбе содержаться ртутные пары, которые вступают в столкновения с электронами, образовывая излучение ультрафиолетом. Оно приводит к яркому свечению люминофора и человек видит привычный для себя электрический свет.

Для большего срока работы ламп лучше пользоваться непостоянным напряжением. Двигающиеся в колбе электроны представляют собой катод и анод. При долгой работе лампы электроны будет перегреваться, за счет чего слой оксида быстро разрушится. После разрушения слоя оксида увеличится сопротивление электродов и снизится световой поток лампы. Когда электроды разрушены лампа перестает работать.

Неисправности энергосберегающих ламп

Энергосберегающие лампы мощность таблица

Поломка энергосберегающей лампы

Решение проблемы поломки лампы

Повышение напряжения приводит к вздутию и протечке конденсатора, лампа прекратит работать.

Такое повреждение требует заменить все полупроводники.

Повышение напряжения пробивает конденсатор. Прибор начинает светиться в местах, где остались нити накала.

Данное повреждение исправляется заменой конденсатора.

Неправильная эксплуатация приводит к неравномерному распределению светового потока. Колба частично герметизируется.

В этой ситуации лампа неисправна.

При сгорании нити накала (достаточно одной), лампа не работает. Для начала необходимо проверить конденсатор.

На месте оборванного накала, диод заменяется резистором посредством выпаивания.

Неисправность диодного тиристора приводит к поломке устройства.

*****

Таблица мощности энергосберегающих ламп

Замена ламп накаливания на энергосберегающие – это первый шаг, который необходимо сделать в направлении экономии потребления электрической энергии. Многие уже заменили привычные лампочки на люминесцентные (компактные и линейные) и светодиодные. Последние – хоть и стоят дорого, но в настоящее время являются наиболее экономичными. Энергосберегающими лампами называют устройства с высокой светоотдачей, и чем она выше, тем больше энергии сберегается.

Энергосберегающие лампы мощность таблица

Внешний вид ламп: накаливания, люминесцентной компактной и светодиодной

Основные характеристики

К основным характеристикам относят следующие показатели:

  • мощность лампы, измеряемую в Вт (ваттах);
  • световую эффективность или светоотдачу (яркость), измеряемую в Лм/Вт (люмен/ватт);
  • индекс цветопередачи, измеряемый в %.

Мощность лампочки говорит о количестве потребляемой энергии в час, показатель светоотдачи – сколько света она дает на 1 затраченный ватт, а индекс цветопередачи – о соответствии солнечному освещению (в идеале должно быть 100%).

Какая должна быть освещенность или сколько нужно света для выполнения тех или иных задач? Для этого используют единицу освещенности лк (люкс). Она показывает уровень освещенности, который создается световым потоком в 1 лм, равномерно распределенному по поверхности в 1 м 2 .

Освещенность должна соответствовать нормативам, установленными законодательными документами (СНиПам). Проверить это не тяжело. Для этого достаточно произвести несложные расчеты. Необходимо подсчитать суммарную мощность ламп Вт, которые или установлены в конкретном помещении, или планируется установить, полученную цифру умножить на светоотдачу лампочек в лм (указывается в паспорте лампы) и разделить на площадь помещения в м 2. Полученные расчеты сравнить с нормативными показателями.

Принцип работы

В лампочках накаливания источником света является проводник эл. тока, изготовленный из тугоплавкой проволоки, который под его действием раскаляется и начинает светиться. Сам проводник размещен в колбе из стекла, заполненной инертным газом. Для присоединения к источнику питания служит цоколь, который у стандартной лампочки, применяемой в быту, имеет маркировку Е27.

Энергосберегающие лампы мощность таблица

Обычная лампочка накаливания

Разновидностью лампочек накаливания являются галогеновые лампы, которые отличаются от привычных осветительных приборов лишь материалами и технологией изготовления. Добавка к инертным газам, находящимся в колбе, паров брома или йода (галогенов) приближает индекс цветопередачи к отметке 100% и увеличивает светоотдачу. Это преимущество оценили производители автомобильных фар. На дорогах важны такие факторы, как четкость предмета и освещенность, что и позволило с помощью галогеновых ламп реализовать эти 2 важных преимущества в производстве автомобильных фар.

Энергосберегающие лампы мощность таблица

Стандартная галогенная лампочка

У люминесцентных светильников под воздействием эл. тока возникает газовый разряд, который излучается в ультрафиолете. Это способствует свечению люминофора, которым покрыто внутреннее пространство колбы лампочки. По сроку службы такие энергосберегающие изделия превосходят традиционные лампы накаливания в десятки раз. В настоящее время ассортимент выпускаемых ламп обширный, различаются они по форме трубок, мощности и типу присоединения к питающей сети.

Энергосберегающие лампы мощность таблица

Люминесцентная компактная лампа

У светодиодных лампочек телом накаливания служит полупроводник. При пропускании эл. тока он генерирует оптическое излучение. В области р-n перехода часть энергии сбрасывается в виде видимого света. Впервые такое уникальное изделие появилась в 1962 г. с тех пор его технология производства совершенствовалась, и сегодня рынок этой продукции наиболее обширный. Эффективность светодиодных ламп доказана временем.

Энергосберегающие лампы мощность таблица

Разнообразные светодиодные лампочки

Таблица соответствий

Светодиодные лампы превосходят другие типы ламп по следующим основным показателям:

  • энергопотреблению;
  • светоотдаче;
  • тепловыделению;
  • ударопрочности;
  • экологичности;
  • пожарной безопасности;
  • сроку эксплуатации.

Сравнительные характеристики ламп по мощности

Из таблицы видно, что потребление электроэнергии у светодиодных изделий самое небольшое, поэтому осветительные приборы этого типа наиболее экономичны. Сколько люмен в лампе? Зависит этот показатель от мощности лампочки. Поток света в люменах указан в таблице.

Цвет светового потока у светодиодных изделий может быть самым разным. Он определяется химическим составом светодиода. Иногда для этого в конструкцию лампы устанавливают разные светодиоды и светофильтры, что позволяет получить свечение в широком диапазоне спектра.

Лампочки еще принято сравнивать по следующим показателям:

  • степени нагреву;
  • антивандальности;
  • сроку эксплуатации.

В процессе работы сильно нагреваются лампы накаливания и галогенные. Известно, что на освещение лампочки накаливания тратится чуть больше 20% мощности, остальное идет на ее нагрев. У галогенных лампочек эти показатели соответственно составляют 35 и 65%, у люминесцентных – 75 и 25%, а у светодиодных в среднем – 97 и 3%.

По прочности конструкции самыми хрупкими являются лампы накаливания и галогенные. Колбы светодиодных лампочек сделаны из ударопрочного материала и могут выдерживать падение с небольшой высоты. Хуже обстоит дело с люминесцентными лампами, хоть корпус их намного прочнее корпуса ламп накаливания, однако с экологической точки зрения его разрушение губительно сказывается на здоровье. Поэтому они должны проходить специальную утилизацию.

И, наконец, срок службы, который принято указывать в часах. Пальма первенства принадлежит опять светодиодным осветительным приборам. Практически их срок службы лежит в пределах от 25 до 100 тыс. часов и зависит это от технологии производства, применяемых материалов и производителя. Остальные типы лампочек служат гораздо меньше, например, лампы накаливания – 1 тыс. часов, галогеновые – 4 тыс. часов, люминесцентные – не более 10 тыс. часов.

Ремонт лампы. Видео

Про самостоятельный ремонт энергосберегающей лампы подробно расскажет это видео.

Вывод один: по всем показателям, включая дизайн, а он может самым разным, светодиодные лампочки значительно превосходят остальные типы ламп. Сравнительные характеристики светильников, указанные в таблице, ярко демонстрируют разницу.

Единственный недостаток этих изделий – высокая стоимость. Но большой срок эксплуатации и их явная энергоэффективность окупятся быстро. Если есть желание и необходимость в экономии потребления электроэнергии, то начинать надо с замены ламп на энергосберегающие и желательно сразу на светодиодные.

*****

Таблица сравнения энергосберегающих ламп, ламп накаливания и светодиодных

Энергосберегающие лампы мощность таблицаЭнергосберегающая лампа позволяет экономить средства на оплате коммунальных платежей. Также у нее достаточно долгий срок службы. Многие производители предоставляют на нее гарантию. Это значит, если у вас по какой-либо причине вышла лампа из строя, ее обязаны заменить на новую. Только важно не забывать о ее правильной эксплуатации.

Светодиодная лампа– это хороший экономный вариант, который отлично подойдет практически для любого помещения. Для того, чтобы выбрать качественную светодиодную лампу, необходимо предварительно ознакомится с ее характеристиками. Показатели мощности этого освещения приведены в дополнительной таблице. Таблица сравнения ламп накаливания и светодиодной. С нее видно, что светодиодная имеет меньшую мощность 3 Вт в отличие от накаливания 23 Вт. Так что лучшим вариантом для экономии будет второй. Соотношения мощности ламп накаливания и светодиодной значимое для уменьшения затрат электроэнергии.

Энергосберегающие лампы мощность - таблица

Энергосберегающие лампы мощность таблица

Энергосберегающая лампа 15 Вт соответствует лампе накаливания 75 Вт, что вполне достаточно для освещения одной комнаты. Тогда 9 Вт энергосберегающая лампа соответствует 45 Вт обыкновенной. А 11 Вт энергосберегающая лампа соответствует 55 Вт лампы накаливания. Таблица энергосберегающих ламп и ламп накаливания показывает то, что более экономной будет первый вариант. Уровень освещения при этом будет одинаковым. К тому же такое изделия прослужит дольше в несколько раз.

Соответствие мощности ламп накаливания и энергосберегающих достаточно большое. Поэтому энергосберегающая лампа считается самым оптимальным вариантом для современной экономии при высоких тарифах на электричество.

Таблица сравнения ламп накаливания и энергосберегающих ламп

Энергосберегающие лампы мощность таблица

Сравнения ламп накаливания, энергосберегающих и светодиодных

Для того, чтобы определиться, какая лампа лучше: энергосберегающая, лампа накаливания и светодиодная, можно рассмотреть таблицу мощностей по каждому изделию. В таблице сравнения ламп накаливания энергосберегающих и светодиодных приведена подробная характеристика мощности всех видов ламп. Здесь видно, что энергосберегающая лампа 20 Вт соответствует потреблению мощности 5-7 Вт люминесцентной лампы и 2-3 Вт – светодиодной. Эта таблица показывает, что светодиодная лампа самая экономичная и имеет много преимуществ.

Таблица сравнения ламп накаливания, энергосберегающих и светодиодных

Энергосберегающие лампы мощность таблица

В наше время особо актуален стал вопрос экономии. Люди стараются экономить практически на всем. Особенно дорого стало платить за коммунальные услуги. В том числе и свет. Одним из способов сэкономить есть использование экономных ламп. Сравнительную характеристику разных видов ламп приведено выше: лампы накаливания, энергосберегающих, светодиодных.

Для выбора наиболее подходящего варианта для экономного освещения в вашем доме необходимо ознакомиться с мощностью каждого изделия.

Приведенные характеристики показывают то, что светодиодная лампа будет самой экономной и будет затрачивать меньшое количество энергии. Для того, чтобы заменит одну лампу накаливания с мощностью 75 Вт достаточно взять светодиодную лампу 10-12 Вт или люминесцетную – 18-20 Вт. Они могут полностью заменит освещение в одной комнате. Сразу вы ощутите экономию, если установите одну из таких ламп у себя по всей квартире. К тому же служат они намного дольше, чем их более дешевый аналог. Они будут отлично смотреться в любом светильнике, люстре, бра, ночниках.

Оставьте комментарий и вступите в дискуссию

*****

Как выбрать энергосберегающую лампу правильно

Энергосберегающие лампы мощность таблица

Энергосберегающая лампа (КЛЛ) — это современное изделие для освещения любых помещений. Основным достоинством, по которому экономка получила огромную популярность среди населения, является ее низкий показатель потребления электроэнергии.

Но перед тем как приобрести это изделие, возникает вопрос: «Как правильно выбирать эти лампы?». И это действительно проблема для населения, ведь конструкция данного изобретения является закрытой, и о ней практически ничего не известно.

Чтобы разобраться в данном вопросе, рассмотрим основные критерии выбора экономок, а также для каких помещений они предназначаются.

Критерии качества экономок и опасность подделок

Приняв решение о переходе на энергосберегающие виды освещения, необходимо остановить свой выбор на качественном изделии, которое прослужит указанный производителем срок. Мало того, лампа должна излучать правильный и «полезный» свет, ведь освещение влияет в первую очередь на зрение, а также общее состояние здоровья человека .

Энергосберегающие лампы мощность таблица КЛЛ отличаются по форме, размеру цоколя, мощности и др. параметрам

При выборе экономок стоит обратить внимание на такие показатели:

  • мощность;
  • тип цоколя;
  • цветовая температура излучения;
  • форма.

Это основные показатели, по которым выбираются энергосберегающие лампы. Общие сведения выбора экономок по этим показателям описано в статье о технических характеристиках энергосберегающих ламп .

К сожалению, рынок осветительных приборов заполонен некачественными изделиями. Такие изделия называются подделками, и они представляют особую опасность для человека по нескольким причинам:

  1. «Неправильное» излучение света от такого изделия приводит к нарушению зрения.
  2. Повышенное содержание паров ртути обуславливает негативное влияние на здоровье человека.
  3. Некачественное производство влияет на срок службы, который намного ниже заявленного производителем.
  4. Величина светового потока. Большое значение величины потока приводит к излучению инфракрасных и ультрафиолетовых лучей опасных для человека.

Для выбора качественной люминесцентной лампы стоит обратить внимание на следующие критерии :

  • пусковое устройство;
  • качество люминофора;
  • гарантийный срок.

Пусковое устройство

Пусковое устройство представляет собой электронную плату, посредством которой происходит розжиг спиралей энергосберегающей лампы. Плата — это тот же блок питания, который преобразовывает электрическое напряжение в высокочастотный импульс.

Энергосберегающие лампы мощность таблица Строение лампы энергосберегающей с ЭПРА

Плата собирается из электронных деталей: диодов, транзисторов, дросселя, тиристоров и резисторов. Собираются они по определенной схеме, посредством чего и происходит функционирование лампы. Принцип работы электронного дросселя для люминесцентных ламп основан на стабилизации напряжении сети

Экономка — это сложное осветительное изделие, которое без пускового устройства не зажжется. и не будет функционировать. От качества деталей и сборки платы зависит срок службы лампы.

Определить качественно изготовленную плату на глаз невозможно (конструкция КЛЛ является неразборной). Для этого необходимо ее включить в сеть и пронаблюдать:

  1. Качественное пусковое устройство зажжет колбу лампы в течение 1-2 секунд.
  2. При ее зажжении величина светового потока будет возрастать, пока не достигнет пиковой величины свечения.

Запрещено пытаться разбирать лампу для определения ее качества изготовления или проведения ремонтных мероприятий.

Качество люминофора

Второй элемент конструкции лампы, без Энергосберегающие лампы мощность таблица которого невозможно ее свечение, называется колбой. Это стеклянная конструкция различной формы, которая изнутри заполняется люминофором. Люминофор — это порошкообразное вещество, которое излучает световой поток. Белое напыление на стенках колбы лампы является люминофором.

При включении лампы происходит взаимодействие электронов с атомами газов, содержащихся внутри колбы. Это воздействие настолько активно, что способно выделять энергию. Эта энергия проходит сквозь стекло лампы с люминофором, которая преобразуется в световой поток.

Важно, чтобы КЛЛ была заполнена качественным содержанием люминофора.

Некачественное химическое вещество сокращает срок службы лампы и негативно отражается на зрительных органах человека.

Подделка же при зажжении будет иметь несоответствующую температуру свечения. Цвет, которым будет светить лампа, изображается на упаковке изделия. Поэтому остерегайтесь подделок и не покупайте изделие по акционным или сниженным ценам — это 100% подделка.

Срок службы

Срок службы изделия, указанный на коробке, и действительный срок, очень сильно отличаются. Ведь немаловажными факторами, влияющими на продолжительность службы лампы, являются (помимо некачественного производства):

  1. Среда эксплуатации. В помещении с повышенной влажностью или на морозе продолжительность службы экономки намного снижается.
  2. Количество переключений.
  3. Перепады напряжения сети.
  4. Количество прикосновений рукой к колбе.

Запрещается прикасаться к колбе лампы. Жировые пятна от рук влекут за собой выгорание люминофора.

Энергосберегающая КЛЛ качественного производства имеет среднюю продолжительность службы (до 25 тысяч часов). Это означает, что если ее включить, то она способна излучать световой поток на протяжении заявленного времени. Но когда нет необходимости ее свечения, человек ее отключает, а при надобности включает. И, это явление влияет на срок работы лампочки.

Сравнение с другими видами освещения

При сравнении сроков службы КЛЛ, стоит отметить важный показатель — это стоимость. Именно решающим аргументом при выборе осветительного элемента является цена изделия. Ниже в таблице приведены основные виды ламп, их показатели срока службы и стоимость.

Сравнительная таблица цен и характеристик ламп разных типов

Оптимальным решением и лидирующую позицию среди продаж занимают именно энергосберегающие КЛЛ.

Выбор для помещений различных видов

Энергосберегающие лампочки подбираются в зависимости от характера помещения. Это могут быть:

  • дом или квартира;
  • производственное помещение;
  • коммерческое (офис, кабинет и т.п.).

Дом или квартира являются помещениями, в которых человек проводит максимальное количество своего времени. Очень важно чтобы в доме было уютное и безопасное освещение.

Энергосберегающие лампы мощность таблица Современные энергосберегающие лампы в интерьере квартиры (фото)

В нем могут устанавливаться:

  • потолочные люстры;
  • настенные светильники;
  • врезные светильники;
  • торшеры, бра и настольные светильники.

Во все эти осветительные приборы можно устанавливать энергосберегающие лампы.

Энергосберегающие лампы не работают под управлением регулятора освещенности.

Рассмотрим подробнее, какие же лампы необходимо устанавливать в доме, и отчего зависит их выбор.

В спальне основным источником света является люстра, а дополнительным — настенные светильники, торшеры и прочее. В люстру устанавливаются КЛЛ небольшой мощности (до 15 Вт). Спальня предназначена для отдыха, поэтому преобладание теплых тонов света будет кстати. Используйте КЛЛ с температурой свечения 2700-3600 К.

Необходимо учесть размер плафона люстры. В люстру с узким плафоном спиралевидная конструкция КЛЛ не войдет, поэтому стоит остановиться на других формах ламп.

Настенные светильники и торшеры зачастую имеют диаметр цоколя Е14. Это важно учесть при выборе КЛЛ в такие осветительные приборы. Дополнительное освещение не должно быть ярким и мощным. Поэтому в торшеры, бра и прочие светильники выбираются КЛЛ малой мощности (6-8 Вт) и цветом свечения 2700 К.

В гостиной чаще всего используются большие люстры или врезные светильники. И к первым и ко вторым подходят энергосберегающие изделия. Свет в этой комнате должен быть приближенным к естественному. Для этого экономки должны иметь температуру свечения 4200-6300 К с голубым оттенком.

Выбор по мощности КЛЛ зависит от площади помещения и количества патронов в люстре. Оптимальная мощность для гостиной составляет 15 Вт на одну КЛЛ.

Если люстра имеет 5 плафонов, а площадь комнаты составляет 15 м2, то нерационально будет устанавливать 5 ламп мощностью 15 Вт. Комната будет перенасыщена светом, что приведет к быстрому переутомлению глаз.

В доме запрещается размещать во врезных светильниках энергосберегающие лампы с U- образной колбой, где она будет выходить за конструкцию (если конструкция светильника не имеет защитной колбы). Такое размещение допускается в офисных или других помещениях, где вероятность механического повреждения изделия равна к нулю.

Детская комната является ареной для игр и развлечений малышей. Здесь главное правильно разместить светильники. Если в комнате установлена люстра, то плафоны ее должны быть защищены не стеклянными колбами, а тканевыми, пластиковыми или поликарбонатными. Это защитит энергосберегающую лампу от механических разрушений.

Оптимальным вариантом детской комнаты является установка врезных в потолок светильников и вкручивание в них экономок. Такой вид светильника является максимально защищенным от механических воздействий. К примеру, дети любят играть мячом, а первым самым опасным местом, куда может попасть этот объект является люстра с лампой.

Для освещения рабочего места допускается освещение КЛЛ, только если она будет находиться на расстоянии не менее 30 см к телу человека.

На кухне должен быть светильник с защитным колпаком. Этот колпак защищает больше не от механических воздействий, а от пара и влаги. Ведь после ванной кухня является вторым местом по преобладанию повышенной влажности.

Энергосберегающие лампы, очень восприимчивы к влаге. Капля воды выводит светящуюся лампу из строя.

На кухне необходимо поместить лампы мощностью от 8 до 15 Вт, в зависимости от количества патронов в светильнике и площади комнаты.

В ванной и туалете должны быть светильники со степенью защиты как минимум IP44. Это является важным свойством. В такой светильник устанавливается лампа мощностью 15 Вт с температурой свечения 3200-4200 К.

Прихожая зачастую располагает одним настенным или потолочным светильником, в который достаточно вкрутить КЛЛ мощностью 6-8 Вт.

Для коммерческих помещений

Для освещения коммерческих помещений энергосберегающие лампы являются идеальным решением, так как:

  1. Большое по объему помещение рационально освещать энергосберегающими источниками.
  2. На работе, где требуется зрительная нагрузка, лучшим способом освещения такого помещения является естественный природный свет, который способны излучать только лампы с люминофором.
  3. Продолжительность работы КЛЛ. Нормальный рабочий день длится 8 часов, поэтому лампу накаливания приходилось бы менять каждый месяц. Экономка же будет служить как минимум 2-3 года.

Энергосберегающие лампы мощность таблица «Энергосберегающее» освещение в офисе

В офисах чаще всего используются три типа светильников: врезные, подвесные и встраиваемые. Выбираются они в зависимости от таких факторов:

  • высота и площадь помещения;
  • необходимая освещенность рабочего места.

Если высота потолков составляет три и более метров, то оптимальным вариантом является установка встраиваемых светильников размерами 60х60 см. В таких светильниках используются люминесцентные лампы с длинной колбой. Они обладают максимальными показателями рассеивания светового потока, что является важной особенностью для освещения больших помещений.

В светильниках размещаются люминесцентные лампы мощностью 10 Вт и температурой излучения 6000-6500 К (естественный свет является оптимальным при зрительных нагрузках).

Также в коммерческих помещениях допускается установка врезных круглых светильников. В офисе устанавливать энергосберегающие КЛЛ с колбой, выходящей за пределы конструкции врезного светильника, разрешено. Использование таких ламп является наиболее рациональным, так как световой поток обуславливает большее рассеивание.

Подвесные светильники в коммерческих помещениях используются редко. Чаще всего там, где потолок имеет высоту более 4-5 метров. Если бы световой поток исходил с такой высоты, то до рабочего места доходило бы не более 40% света.

В подвесные светильники устанавливаются люминесцентные лампы различной длины в зависимости от размера светильника. Световой поток должен быть максимально близким к природному. поэтому эти КЛЛ выпускаются с различными цветовыми потоками.

Светильники с КЛЛ для офисных помещений имеют существенные отличия от домашних:

  1. Размеры светильников. В доме нет необходимости установки встраиваемых светильников размерами 60х60 см.
  2. Мощность осветительных элементов для дома намного ниже, чем для коммерческих помещений.
  3. Формы осветительных изделий.
  4. Типы цоколей. Лампочки в цоколи могут вкручиваться или же вставляться.

Для производственных помещений

Светильники для производственных помещений бывают:

  • подвесные прямоугольные;
  • подвесные круглые.

Энергосберегающие лампы мощность таблица Вариант освещения складского помещения энергосберегающими элементами

На таких объектах важно предусмотреть установку ламп определенной мощности, чтобы достичь максимальных значений освещенности. Помещение завода должно освещаться должным образом, порядка не менее 700-800 люмен. в зависимости от характера выполняемых работ.

В такие светильники можно устанавливать энергосберегающие осветительные элементы, которые помогут:

  • снизить расход средств на потреблении электроэнергии;
  • увеличить освещенность помещения;
  • сэкономить на частых заменах ламп накаливания.

Производственные светильники имеют больший диаметр цоколя, в отличие от домашнего или коммерческого помещения. Это цоколь типа Е40, что означает его диаметр 40 мм. Мощность энергосберегающих КЛЛ для производственных помещений находится в диапазоне от 40 Вт и выше. Одна лампа такой мощности способна излучать световой поток порядка 1200-1500 люмен.

Надежные производители: наименования и цены

От надежности производства экономок, как известно из статьи, зависит множество показателей:

  1. Качество изделия, не приносящее вреда для здоровья.
  2. Длительный срок службы, реально соответствующий указанному на упаковке.
  3. Соответствующая стоимость товара.

К надежным и качественным производителям можно отнести компании Европы, которые изготавливают лампочки с соблюдением всех параметров стандартов (ISO 9001). К менее качественным, но популярным по продаже, относятся страны Азии, в частности КНР. Чтобы в итоге не попасться на удочку подделок, в таблице (ниже) указан список самых надежных производителей энергосберегающих ламп.

Энергосберегающие лампы мощность таблица На фирменных коробках с лампочками всегда размещена полная информация о всех свойствах товара

Таблица сравнения цен и характеристик ламп от надежных производителей

Мощность лампы, Вт

Принять верное решение и выбрать лучший экземпляр энергосберегающей лампы поможет видео с записью программы «Контрольная закупка» от Первого Канала, посвященной этому полезному и экономичному продукту.

Отправляясь в магазин за новой экономкой, ознакомьтесь с изложенным материалом и сделайте правильный выбор. И главное, помните, что подделка будет стоить примерно вполовину дешевле от качественного изделия. Для пущей уверенности о надежности производителей указанных выше можно ознакомиться с отзывами покупателей на сайтах их продаж.

  • Энергосберегающие лампы мощность таблица Особенности устройства и технические характеристики энергосберегающих ламп
  • Энергосберегающие лампы мощность таблица Ультрафиолетовые лампы для домашнего использования: загораем, лечимся, дезинфицируем помещение
  • Энергосберегающие лампы мощность таблица Современное решение в интерьере – встраиваемые в стену светильники

Статья подробная и основательная, да вот видно автор не очень интересовался подделками на рынке электротехнической продукции.В таблице приведены надежные/ в общем то / производители. Но при покупке Экономок надо смотреть не на бренд, а на текст мелким/иногда даже с помощью лупы смотреть надо/ шрифтом.А там очень часто — КНР,они как раз под известные бренды и прячутся. А иногда/ чтобы избежать санкций/ меняют одну букву в названии бренда- потребитель чаще всего это и не заметит. В результате покупка очередного барахла под видом продукции надежного бренда.

Для меня вопрос выбора энергосберегающей лампы актуален, так как нет никакого желания переплачивать, тем более за недолговечный товар. Из указанных в таблице брендов энергосберегающих ламп я предпочитаю DeLuxe. На мой взгляд, данный бренд сочетает в себе отличную цену, практически самая дешёвая лампа, и неплохой показатель мощности. Конечно бренд Eurolamp является преобладающим в плане мощности, но и цена у данного товара крайне высокая.

Согласен с Олегом, подделок очень много. Вроде бы стараешься сэкономить, а получается наоборот. Да и вопрос долговечности спорный на энергосберегайках этих. Они подходят для освещения по принципу «включил и забыл». Если их использовать в режиме «вкл — 5мин поработала — выкл», то борода пускателю приходит и лампочку в мусорку. Плюс у нас не развита утилизация таких лампочек. В общем, мне кажется лучше сразу на диоды переходить, хотя тож дорого и китая куча

В последнее время мы все чаще стали использовать в быту энергосберегающие лампочки. Но лично я до сих пор даже и не задумывалась о том, как она работает. А люминофор вообще не вреден? Просто у меня дома маленькие дети, и хотелось бы, чтоб было все безопасно. Мы уже начали менять обыкновенные на энергосберегающие. Тем более, что перепады выдерживает и срок службы большой.

Энергосберегающие лампы какие лучше

Как выбрать энергосберегающую лампу?

  1. Энергосберегающие лампы: какие лучше
  2. Какие бывают энергосберегающие лампы
  3. Какие лампы относятся к энергосберегающим
  4. Подтвержденные плюсы энергоэффективных ламп

В условиях постоянно растущей цены на электричество мы стремимся экономить и одновременно с этим пользоваться нормальным освещением, не режущим глаз, достаточно ярким и не вызывающим раздражения. Именно поэтому энергоэффективные устройства самое оптимальное решение для тех, кто хочет экономно использовать качественный свет. Из данного материала вы узнаете какие лампысамые энергосберегающие, какие разновидности на данный момент существуют, чем лучше тот или иной вид и действительно ли их стоимость полностью окупается.

Энергосберегающие лампы: какие лучше

Энергосберегающие лампы какие лучше

Чтобы понять,какие лампысамые энергосберегающие,сравним их с уже привычными нам всем, обычными лампочками накаливания или, как их еще называли — «лампочками Ильича». Приобретая один такой прибор, вы уже буквально через месяц поймёте насколько это выгодно, приятно для глаз и экономней. По сравнению с обычной лампой накаливания они:

  1. Потребляют меньше энергии, но дают ту же светоотдачу. То есть, КПД у данного устройства намного выше. В отличие от лампочки накаливания, выдающей КПД не более 18–20 %,такое изделие достигает предельной производительности не менее чем в 70–80 %. Говоря более простым языком, из каждых ста ватт обычная лампа,работая во всю мощь и нагревая спираль, выдаёт всего восемнадцать-двадцать процентов света.
  • Служат дольше и имеют больший гарантийный срок. В любом магазине,где продаютсяэнергосберегающие лампочки, вам предоставят гарантию на определенный срок службы. У некоторых разновидностей он может составлять около двадцати лет. Учитывая то, насколько часто сгорают обычные лампы, это очень выгодно, ведь сгоревший энергосберегающий прибор вы можете всегда поменять по гарантии.
  • Довольно безопасны. У всех энергосберегающих ламп (кроме галогенного типа) нет прямого соединения контактов, тогда как у лампочки Ильича все контакты соединяются спиралью. Поэтому в таком случае короткое замыкание практически невозможно.
  • Не несут такой нагрузки на общую квартирную сеть как обычные. Это тоже один из показателей безопасности, благодаря не перегруженности сети остальные бытовые приборыне пострадают.
  • Чтобы понять какие изделия лучше, стоит рассмотреть стандартную таблицу сравнения энергосберегающих ламп. В ней лампочки сравниваются по показателям нагрева, мощности, антивандальности, светового потока, сроку службы и экономической выгоде. Сравнение энергосберегающих ламп с обычными говорит однозначно в пользу первых. И если при покупке вы переплачиваете, то при использовании однозначно экономите.

    Энергосберегающие лампы какие лучше

    Если рассматривать все данные устройства касательно влияния их на зрение человека, энергосберегающие лампы, накаливания, дневного света, то все они с определенной периодичностью мерцают во время своей работы. Это связано с тем, каким образом через них проходит электронный импульс. Невооруженным глазом это не заметно, но при детальном изучении ученые обнаружили что:

    • Холодный спектр влияет на зрение сильнее, чем обычный и из-за этого разрушается сетчатка.
  • Яркость и более частое мерцание в лампах дневного цвета влияют на мозг и стабильность нервных узлов. Люди, работающие в офисе с таким освещением, в 30 раз чаще обращаются за помощью к психоаналитикам.
  • Оптимальной яркостью по последним данным офтальмологов считается показатель 2700–3100 К. Это хорошо, как для гостиной, так и для детской комнаты. Поэтому, выбирая лампочку, учитывайте это.
  • Если лампа находится напротив зеркала, она влияет на зрение на порядок выше. Возле зеркальных поверхностей и стеклянных дверей лучше всего устанавливать энергосберегающие лампочки. Уделяя внимание своей внешности, приводя себя в порядок перед выходом в магазин или на прогулку ваши глаза и мозг не будут так уставать.
  • Сравнивая экономные лампочки между собой, стоит уделить особое внимание нагреву. LED устройство у вас практически не нагреется, люминесцентная станет тёплой, а об галогеновую можно даже обжечь пальцы. По гарантийному сроку службы они также очень отличаются между собой и если галогеновая проработает 2000 часов, то светодиодная готова предоставить свою заводскую гарантию не менее чем на 50 тысяч часов.

    Если говорить подробнее что же это такое и какими они бывают, то давайте перейдем к следующему пункту нашего материала.

    Какие бывают энергосберегающие лампы?

    Энергосберегающие лампы какие лучше

    По определению энергоэффективная лампа — это специальное устройство для равномерного светораспределения, работающее от электросети. В сравнении со своими аналогами, такое изделие имеет повышенный уровень отдачи света и существенно сберегает электричество.

    Такие экономные приборы бывают линейными (ЛЛ) и компактными (КЛЛ). Все они содержат ртуть и светодиодные вещества. Общей чертой линейных и компактных люминесцентных ламп может считаться ощутимая экономия потребления электрической энергии. И при этом, они наполняют пространство гораздо большим светом, нежели привычные лампы накаливания. Последние постепенно выходят из обихода, поскольку многие страны мира в последнее время задают курс на эксплуатацию энергоэффективных устройств из-за их общей безопасности и экономичности.

    Какие лампы относятся к энергосберегающим?

    Энергосберегающие лампы какие лучше

    К энергосберегающимлюминсцентным относятся компактные и линейные лампы, отличающиеся друг от друга по техническим показателям и функциям. Рассмотрим их подробнее, чтоб понять какие энергосберегающие лампы лучше для дома:

    1. КЛЛ (компактные люминисцентные лампы) характеризуется дугообразной формой, что позволяет располагать её в маленьких светильниках. Они почти всегда используются в домашних условиях, являясь оптимальной заменой обычных ламп накаливания. Нередко они входят в комплектацию нестандартных осветительных приборов. В составе такой лампочки находятся инертные газы (известные многим аргон и неон), а также ртутные пары. Внешний корпус отделан люминофором. Благодаря сталкиванию электронов со ртутными компонентами, выделяется незаметное внешне УФ-излучение, превращающееся в рассеянный свет (этому способствует люминофорное покрытие). Компактные лампы состоят из трёх деталей: цоколя для подсоединения к электросети, регулирующего устройства электронного типа для зажигания и поддержания горения лампочки. Он выполняет переход с электросети 220 Вт до того, которое требуется для стабильной работы лампы без мигания. Третьим компонентом прибора являются колбы, представляющие собой внешнюю оболочку лампы. По причине различия указанных элементов, обусловливается и разновидность КЛЛ: к примеру, по цвету излучения, особенностями цоколя (бывают категории 2D, часто устанавливаемых в душевых кабинах, E27 — для обычного патрона, Е14 — для уменьшенного патрона, Е40 — для большого патрона).
  • Линейные люминесцентные лампы (ЛЛЛ) бывают кольцевыми, прямыми, или специфической U-вариации. Прямолинейные устройства имеют форму длинных стеклянных труб, на концах которой располагаются ножки из стекла, где, в свою очередь, закреплены электроды. На внутренней поверхности лампы находится покрытие люминофора, а сама полость трубки заполнена инертными газами и ртутью. Безопасность людей от губящего испарения ртути гарантирует герметичное запаивание лампы. Линейные лампы различаются по показателям диаметра и длины трубки, ширине цокольного элемента. Как правило, чем больше габариты ЛЛ, тем больший получается расход электричества. Зачастую такие ЛЛ применяются на производственных заводах и предприятиях, в офисах и местах общественного значения.Самую большую популярность среди потребителей получили компактные люминесцентные лампы, а линейная их альтернатива неспешно уходит с производства.
  • Подтвержденные плюсы энергоэффективных ламп

    Энергосберегающие лампы какие лучше

    Подводя итоги всему вышесказанному, хочется сделать акценты на том, что применение энергосберегающих световых устройств в быту или на производстве имеет немало достоинств, среди которых особенно заметны следующие:

    1. По данным изготовителей световых устройств, использование энергосберегающих ламп позволяет уменьшить до 80% затрат на электричество. Световой поток данных приборов гораздо выше, чем у привычных ламп накаливания.
  • Энергоэффективные лампы обладают длительным сроком служения. Это более чем в 10 раз дольше, чем работают обыкновенные лампочки. Столь длительное время работы также является большим плюсом для размещения экономных ламп в тех местах, где частые смены лампочек весьма затруднительны (на высоких потолках, между лестничными пролетами и прочих).
  • Вырабатывают меньше тепла, в сравнении с обыкновенными лампами. Благодаря этому, целесообразно ставить небольшие КЛЛ с большим показателем мощности, особенно в сложных конструкциях: бра, люстрах и закрученных формах светильников. Экономные лампы не расплавят провода и пластиковые элементы патрона, что иногда случается при использовании обыкновенных ламп.
  • Свет энергосберегающих ламп намного полезнее для зрения, поскольку распределяется равномерно. Равномерное сияние получается благодаря конструкции лампы: площадь их корпуса больше, чем у спирали обычных лампочек.
  • Возможен выбор разной цветовой температуры. Лампы 2700К дают белый цвет, 6400К — холодную белизну, 4200К — дневной свет. Указанные данные измеряются по шкале Кельвина.
  • Выбирая энергосберегающую лампочку, необходимо не только посмотреть на все показатели и цену, но и уделить внимание фирме изготовителю, тому как надежно сделан цоколь и какого качества стекло в изделии. Только если вас устраивает вся совокупность факторов, изделие стоит покупать. В обратном случае, вам вполне возможно будет некомфортно при подобном освещении, лампа может быстро выйти из строя, стать причиной короткого замыкания во всей квартире или оказаться не настолько экономичной, как вам бы хотелось.

    Больше о выборе энергосберегающих ламп, смотрите в видео:

    Похожие новости

    *****

    • Что ремонтируем?
      нажмите, чтобы раскрыть
      • Энергосберегающие лампы какие лучшеПотолок
        • Энергосберегающие лампы какие лучшеВыбрать
        • Энергосберегающие лампы какие лучшеПодготовить
        • Обои
        • Покраска
        • Натяжной
        • Подвесной
        • Гипсокартон
        • ПВХ панели
        • Реечный
        • Побелка
        • Плитка
      • Энергосберегающие лампы какие лучшеСтены
        • Энергосберегающие лампы какие лучшеВыбрать
        • Энергосберегающие лампы какие лучшеПодготовить
          • Штукатурка
          • Шпаклевка
          • Утепление
          • Звукоизоляция
        • Обои
        • Покраска
        • Плитка
        • Гипсокартон
        • Панели
        • Вагонка
        • Декор. камень
        • Декор. штукатурка
      • Энергосберегающие лампы какие лучшеПол
        • Энергосберегающие лампы какие лучшеВыбрать
        • Энергосберегающие лампы какие лучшеПодготовить
          • Выравнивание
          • Теплый пол
          • Гидроизоляция
          • Звукоизоляция
        • Ламинат
        • Плитка
        • Паркет
        • Линолеум
        • Ковролин
        • Наливной пол
        • Деревянный пол
        • Паркетная доска
        • Плинтус
      • Энергосберегающие лампы какие лучшеОкна
        • Установка
        • Ремонт
        • Мойка и уход
        • Утепление
        • Жалюзи
      • Энергосберегающие лампы какие лучшеДвери
        • Межкомнатные
        • Входные
      • Энергосберегающие лампы какие лучшеЭлектрика
        • Розетки
        • Освещение
        • Выключатели
      • Энергосберегающие лампы какие лучшеТехника
        • Стиральная машина
        • Вытяжка
        • Кухонная плита
        • Холодильник
        • Газовая колонка
        • Кондиционер
        • Телевизор
    • Ремонт комнат
      гостиная, кухня, ванная.
      • Ванная
      • Кухня
      • Детская
      • Балкон
      • Спальня
      • Гостиная
      • Коридор
      • Прихожая

    Как выбрать энергосберегающие лампы?

    Энергосберегающая лампа — долговечный источник света, благодаря которому можно сэкономить в 5 раз больше электроэнергии, чем при использовании обычной лампы накаливания. Как правильно выбирать такую лампу, и какие будут лучшими?

    Все, что нужно знать о мощности

    В первую очередь, при выборе лампы нужно определиться с величиной ее мощности.

    Для подсчета мощности энергосберегающей лампы, нужно применить коэффициент 5 и воспользоваться простой формулой:

    W лампы накаливания / 5 = W лампы энергосберегающей

    Также очень удобна таблица:

    Энергосберегающие лампы какие лучше

    Исходя из этого, если в комнате работают 100-ваттные лампочки, то следует выбирать 25-ваттную эконом-лампу.

    При выборе энергосберегающей лампы для дома и квартиры также нужно учитывать, что данная формула может оказаться бесполезной, если нужно подсчитать мощность лампы китайского производства. «Made in China» часто лукавит и увеличивает мощность в несколько раз. Чтобы не попасться на эту уловку, нужно внимательно изучать все сведения на упаковке.

    Подбираем цоколь

    Самым распространенным и традиционным типом цоколя является цоколь «Эдисона», с обозначением Е27.

    Энергосберегающие лампы какие лучше

    А вот тип цоколя Е14, который имеет меньший, чем у Е27, диаметр, подойдет для бра или настольной лампы.

    Ну и наконец, цоколь Е40 — самый большой из 3-х типов, подойдет для больших светильников.

    Вид свечения

    Для того чтобы свечение энергосберегающей лампы было комфортным для глаз, нужно подбирать ее в соответствии с цветовой температурой. И чем выше будет показатель температурного спектра излучения, тем белее будет светить лампа.

    Офисы и рабочие кабинеты чаще всего оборудуются энергосберегающими лампами, с показателем от 6000 до 6500 K. Для таких помещений их белый свет будет наиболее оптимальным.

    Выбирая лампу для кухни или спальни в квартире, нужно ориентироваться на показатель — 2700 K. Такие лампы будут удобны потому как они по свету схожи с обычной лампой.

    Для комнаты для детей подойдут лампы с 4200 K, свет которых максимально приближен к естественному.

    Совет! Именно из-за типа свечения нельзя покупать сразу много ламп, потому как сначала нужно взять 2 или максимум 3 и протестировать их в различных помещениях. Проверить, насколько они приятны для глаз.

    Форма лампы

    Существует несколько форм ламп:

    Энергосберегающие лампы какие лучше

    Энергосберегающие лампы какие лучше

    Энергосберегающие лампы какие лучше

    Энергосберегающие лампы какие лучше

    Форма лампы не влияет ни на что, кроме дизайна комнаты. Поэтому на форму следует обращать внимание в последнюю очередь.

    Совет! Чтобы сэкономить и не переплачивать лишние деньги, лучше выбирать энергосберегающие лампы U-образной формы, так как лампы спиралевидной формы будут более дорогими из-за сложности изготовления.

    Стоимость, долговечность, наличие гарантии производителя

    Чаще всего оказывается, что срок службы энергосберегающей лампы, который указан на упаковке, обычно не соответствует действительности. Потому как в момент включения лампы происходит особенно сильный ее износ, который снижает указанные, к примеру, 10 тысяч часов до 7 тысяч. Но и это достаточно много! Если все правильно подсчитать, то выходит, что такая лампа может прослужить также долго, как 7 обычных ламп.

    При выборе лампы не нужно экономить, так как дешевый экземпляр может не оправдать надежд и прослужит гораздо меньше, чем это указано на упаковке.

    Если с лампой случится какая-либо поломка, то можно воспользоваться гарантийным ремонтом, который действует от 6 до порой даже 36 месяцев.

    Какие производители энергосберегающих ламп лучше

    Разобравшись с основными параметрами, становится не так уж сложно выбрать подходящую энергосберегающую лампу, но появляется еще одна загвоздка — производитель. А производителей на рынке эконом-ламп огромное множество, а выделить из них что-то качественное бывает крайне сложно.

    Существует 6-ка лидеров, которые выпускают ламы действительно высокого качества:

    Philips — является первопроходцем в изобретении эконом-ламп — первые его лампы появились еще в 1980 году. В настоящее время эта фирма ассоциируется у покупателей с высоким качеством, долгим сроком работы и богатым выбором товара.

    Энергосберегающие лампы какие лучше

    Второй производитель, который раньше всех (в 1985 году) появился на рынке энергосберегающих ламп — это Osram. Лампы этого производителя отличаются продолжительным сроком службы и большим числом перезапусков (до 50 тысяч).

    Энергосберегающие лампы какие лучше

    Фирма Navigator (с 2006 года) представляет около сотни моделей, среди которых можно найти все возможные виды эконом-лампочек.

    Энергосберегающие лампы какие лучше

    Camelion выпускает 3 серии ламп, которые различаются размерами (от стандартного до ультракомпактного) и сроком службы (от 6 до 10 тысяч часов).

    Энергосберегающие лампы какие лучше

    И последняя фирма — это Эра, которая появилась в 2008 году. Гарантирует высокое качество и большой выбор.

    Энергосберегающие лампы какие лучше

    Энергосберегающие лампы помогают экономить до 75 % электрической энергии, а, значит, они берегут наши деньги и время. К тому же, они пожаробезопасны, так как в процессе работы их нагрев минимален.

    Для того чтобы правильно выбрать энергосберегающую лампу для дома, нужно ориентироваться на ее мощность, цветовую температуру, тип цоколя, продолжительность работы и цену. После подбора основных параметров можно выбирать и фирму лампы.

    Полезное видео о том, как выбрать энергосберегающую лампу так, чтобы она оправдала свои деньги:

    *****

    Энергосберегающие лампочки: плюсы и минусы. Лучшие энергосберегающие лампочки

    December 25, 2014

    С тех пор как на рынках появились энергосберегающие лампы, обычные лампы накаливания стремительно стали сдавать свои позиции. Обусловлено это тем, что выходит из самого названия продукции – экономия энергии. Однако самые свежие научные исследования ошарашили покупателей заявлением, что опасны энергосберегающие лампы. Как выбрать "экономку", взвесить все "за" и "против" и прийти к единому верному решению?

    Энергосберегающие лампочки: плюсы и минусы

    Энергосберегающие лампы какие лучше

    Вначале давайте поговорим о достоинствах данных изделий.

    • Сбережение энергии происходит за счет высокой световой отдачи. Лампы накаливания значительно отстают от энергосберегающих по этому показателю, так как более 85% всей затрачиваемой энергии уходит на накопление тепла, которое поступает в вольфрамовую проволоку. В экономках та же электроэнергия напрямую преобразовывается в свет.
    • Продолжая говорить о том, какие энергосберегающие лампочки плюсы и минусы имеют, нельзя забывать о долговечности этих устройств. Средние показатели времени, которое способна проработать лампочка без перерывов, – 6-15 тысяч часов. В состав таких ламп не входит нить накала, которая со временем перегорает. Поэтому срок, который может прослужить экономка, в разы превышает время функционирования ламп накаливания.
    • Энергосберегающие лампы позволяют пользователю самостоятельно выбирать уровень свечения.
    • Лучшие энергосберегающие лампочки даже при самой высокой мощности не перегреваются. Поэтому их можно использовать в тесных светильниках, сделанных из материалов, которые могут деформироваться от тепла. В то же время лампочки накаливания могут расплавить плафон, пластиковые аксессуары на люстре и даже провода, что очень опасно.
    • Свет распределяется равномерно по всему помещению. В конструкции обычных лампочек свет излучается непосредственно от вольфрамовой нити только в одном направлении. Энергосберегающая лампа распределяет свет максимально равномерно благодаря тому, что светится вся. Исследователи отмечают, что такой эффект понижает уровень утомляемости человеческих глаз.

    Энергосберегающие лампы и их недостатки

    Итак, продолжая говорить о том, какие энергосберегающие лампочки плюсы и минусы имеют, давайте сейчас остановимся на недостатках.

    • Срок, который может прослужить энергосберегающая лампа, напрямую зависит от выбранного режима. В помещения, в которых все время включается/выключается свет, не подойдут лампочки энергосберегающие.
    • Цена довольно высокая (от 75 до 350 руб.).
    • Длительность разогрева. Моментально осветить комнату при помощи этой лампы невозможно, так как разогревается она постепенно. В среднем этот процесс длится 2 минуты.

    Энергосберегающие лампы какие лучше

    • Не исключена возможность мерцания, раздражающего глаза.
    • Энергосберегающие лампы излучают ультрафиолет. Такие лучи являются опасными для всех людей, потому что негативно влияют на кожный покров, особенно для тех, чья кожа очень чувствительна. Им категорически запрещено находиться недалеко от таких ламп, не ближе 30 см. Избыток ультрафиолета приводит к кожным заболеваниям. Согласно исследованиям, проведенным медиками, оптимальная мощность лампы для людей с проблемной кожей – 21 Ватт и ниже.
    • Эти лампы невозможно использовать в люстрах, где предусмотрена регуляция интенсивности освещения. Происходит это из-за неподходящей конструкции: когда напряжение понижается хотя бы на 10% от стандартного, энергосберегающие лампочки отключаются из-за недостатка питания.
    • По своему химическому составу лампы не опасны в ежедневном использовании. Однако, разбиваясь, они выпускают в воздух ртуть и фосфор. Пары этих веществ из одной лампочки, согласно исследованиям ученых, способны превысить допустимую норму в 20 раз, от чего беременные женщины и дети, находящиеся в этот момент в помещении, могут получить непоправимые нарушения здоровья. Если все-таки разбилась энергосберегающая лампочка, что делать, простой пользователь не всегда знает, поэтому есть набор определенных правил, который мы привели в конце статьи.
    • Обязательная специальная утилизация. Перегоревшие лампы категорически запрещено выбрасывать вместе со всеми остальными отходами.

    Выбираем энергосберегающую лампу

    На сегодняшний день рынок предоставляет большой выбор такого товара, как энергосберегающие лампочки. Как выбрать данную продукцию, чтобы лампа нам подошла по своим характеристикам и по стоимости.

    Энергосберегающие лампы какие лучше

    Ранее, когда мы выбирали лампу накаливания, наше внимание больше всего занимали вопросы: насколько целостна вольфрамовая нить, цоколь и какова же мощность. Исходя из последнего, мы машинально начинали высчитывать, сколько киловатт покажет счетчик после использования одной такой лампочки. Существенно низкий показатель потребления электроэнергии, следовательно, относительно небольшая плата за ее потребление – это преимущества, за которые покупатели предпочитают лампочки энергосберегающие, цена на них выше, но они со временем себя окупают. Причем срок службы у «экономок» большой.

    Рассматривая, какие энергосберегающие лампочки плюсы и минусы имеют, мы говорили о таком важном показателе, как время работы. Среднестатистическое время работы довольно компактной люминесцентной лампы – не менее 8 тысяч часов. На это же время понадобится по меньшей мере 8 обыкновенных лампочек. В целях экономии собственных средств также следует сделать выбор в пользу более экономного варианта.

    Наибольшей популярностью пользуются линейные люминесцентные лампы, они довольно компактны за счет меньшего диаметра трубки и пониженного содержания ртути.

    Цоколь энергосберегающих ламп

    Цоколи имеют стандартный размер, поэтому как у накаливающихся, так и у люминесцентных ламп тип один – Е27.

    Энергосберегающие лампы какие лучше

    Также возможны цоколи типа Е-14 для случаев, когда лампы имеют нестандартный размер, меньше обычного.

    Энергосберегающие лампочки: мощность

    Мощность энергосберегающих лампочек варьируется в радиусе 3-90 Вт. Выбирая лампу для дома, необходимо помнить, что уровень светоотдачи таких ламп в 5 раз превышает силу обычных. Подобрать лампу для комнаты можно с помощью несложной математической операции, нужно поделить мощность лампы накаливания на 5 и мы поймем, какие нам нужно купить энергосберегающие лампочки. Как выбрать данный товар по другим показателям, рассмотрим ниже.

    Цветовой показатель

    Люминесцентные лампы разработаны по особым технологиям, которые позволяют воспроизводить разные уровни освещения. Эти цвета соответствуют гамме холодный-теплый. Температура цвета зависит от количественного показателя. Чем выше характеристики температуры, тем воспроизводимый лампой свет будет ближе к холодным тонам, а комната будет наполняться голубым светом. И наоборот, низкий показатель температуры наполнит помещение красноватым цветом.

    Энергосберегающие лампы какие лучше

    Этот показатель высчитывается следующим образом:

    • Ниже 4000 К – теплые оттенки.
    • 4000-6400 К – дневное освещение.
    • 6500 и выше – холодные оттенки, приближающиеся к синему.

    Правила эксплуатации энергосберегающих ламп, чтобы они не моргали

    Рассматривая энергосберегающие лампочки, плюсы и минусы этих изделий, нельзя обойти вопрос моргания лампочки. Это плохо как для самой лампы – она быстрее перегорает, так и для человека - частая смена освещения плохо сказывается на нервах и глазах человека.

    Энергосберегающие лампы какие лучше

    Давайте рассмотрим, почему моргает выключенная энергосберегающая лампочка и как бороться с возможной проблемой этого явления.

    • С точки зрения техники безопасности, выключатели необходимо подключать к фазе, а не к нулю.
    • При использовании люминесцентных ламп выключатели не должны быть с индикатором подсветки.
    • Чтобы лампы не моргали, следует обратить внимание на более качественные модели. У них должна быть задержка выключения хотя бы 2 секунды, тогда лампочки не будут моргать, даже если в выключатель встроена ночная подсветка.
    • Желательно в люстру на несколько плафонов вкручивать одну обыкновенную лампочку.

    Меры предосторожности при эксплуатации ламп

    Лампы, рассчитанные на среднюю мощность, обычно содержат около 1 мг ртути. Это примерно как один шарик на конце ампулы с пастой для ручки. В градусниках содержится около 500 мг. Несмотря на то что разница содержания ртути в лампе и градуснике довольно велика, используя лампы, не стоит забывать об осторожности. Даже небольшое количество испарений не должно попасть в воздух. Однако не всегда удается избежать таких ситуаций.

    Разбитая энергосберегающая лампочка

    Энергосберегающие лампы какие лучше

    Многие покупатели задаются вопросом: "Если разбилась энергосберегающая лампочка, что делать?" Если она все-таки разбилась, необходимо принять следующие меры:

    • Все посторонние лица должны покинуть помещение, обходя место с разбитой лампой.
    • Необходимо хорошо проветрить помещение.
    • Проветривание совершать только с помощью окон, искусственную систему кондиционирования необходимо отключить.
    • Если разбилась энергосберегающая лампочка, ее осколки и остатки необходимо собрать при помощи плотной бумаги и поместить в герметично закрывающуюся банку или целлофановый пакет.
    • Собирать мелкие детали и порошок следует при помощи скотча или липкой ленты.
    • Место, где были осколки, следует обработать влажными салфетками. Все материалы, которые использовались для сбора остатков, необходимо также поместить в герметичный пакет.
    • Если разбилась энергосберегающая лампочка, никогда не собирайте остатки ртути при помощи пылесоса.
    • Все вещи, которые контактировали с осколками, необходимо выбросить. Те же, что просто пропитались парами, следует хорошо выстирать.
    • Обувь нужно сразу же протереть салфетками и оставить на открытом воздухе проветриваться.
    • Все ненужные вещи следует утилизировать, а необходимые тщательно проветрить.
    • После утилизации всех отходов хорошо вымыть руки.

    Энергосберегающие лампы какие лучше

    Неожиданно: мужья хотят, чтобы их жены делали чаще эти 17 вещей Если вы хотите, чтобы ваши отношения стали счастливее, вам стоит почаще делать вещи из этого простого списка.

    Энергосберегающие лампы какие лучше

    Что форма носа может сказать о вашей личности? Многие эксперты считают, что, посмотрев на нос, можно многое сказать о личности человека. Поэтому при первой встрече обратите внимание на нос незнаком.

    Энергосберегающие лампы какие лучше

    Зачем нужен крошечный карман на джинсах? Все знают, что есть крошечный карман на джинсах, но мало кто задумывался, зачем он может быть нужен. Интересно, что первоначально он был местом для хр.

    Энергосберегающие лампы какие лучше

    Как выглядеть моложе: лучшие стрижки для тех, кому за 30, 40, 50, 60 Девушки в 20 лет не волнуются о форме и длине прически. Кажется, молодость создана для экспериментов над внешностью и дерзких локонов. Однако уже посл.

    Энергосберегающие лампы какие лучше

    Топ-10 разорившихся звезд Оказывается, иногда даже самая громкая слава заканчивается провалом, как в случае с этими знаменитостями.

    Энергосберегающие лампы какие лучше

    10 очаровательных звездных детей, которые сегодня выглядят совсем иначе Время летит, и однажды маленькие знаменитости становятся взрослыми личностями, которых уже не узнать. Миловидные мальчишки и девчонки превращаются в с.

    *****

    Компания ООО "Ориент-Комплект" занимается комплексным обеспечением вентиляции зданий и помещений, различных назначений. Наша технологическая линия позволяет изготавливать жесткие воздуховоды и.

    Теперь только в Компании "Прогресс-Строй" ТеплоЗвукоИзоляционные блоки YTONG из газобетона! Для возведения межкомнатных, межквартирных перегородок а также для строительства домов. Газобе.

    Приморский край являет собой одновременно образец современного строительства и перспективную площадку для развития, поэтому особенно важно, чтобы на строительном рынке Приморья присутствовали матери.

    Энергосберегающие лампы. Какие лучше?

    После приобретения новой люстры из 6-ти рожков в зал, встал вопрос о целесообразности использования обычных «лампочек Ильича», т.к. даже если вкрутить лампы на 45 ватт выходило, что из-за удовольствия находиться в светлой комнате пришлось бы расходовать порядка 270 ватт электроэнергии в час, а в год. Даже если предположить, что свет будет гореть по вечерам 3 часа и утром 1 час, т.е. в сутки 4 часа, в год 1460 часов, расход электроэнергии за год 1460 часов*270 ватт = 394 200 ватт или 394,2 кВт. Стоимость 1 кВт/час во Владивостоке, 1,69 рублей, получается, что люстра в год будет «тянуть» более 666 рублей семейного бюджета (если тарифы не повысят :-). Вроде бы не много, но комната в квартире не одна… в общем считайте сами.

    Т.к. люстра со стандартным цоколем, необходимо было найти энергосберегающие лампы с цоколем Е27. Начал искать в интернете информацию, какую марку энергосберегающих ламп выбрать, выбор оказался огромен, так же как и количество отзывов, но реального сравнения или тестирования разных ламп практически нигде не описывается, как говорится, сколько людей – столько и мнений.

    Было принято решение тестировать лампочки самому, поехал на Вторую Речку и на необъятных просторах Бородинской 46/50 подобрал себе 6 ламп различных марок, но с одинаковыми характеристиками:

    - энергопотребление 9 ватт (световой поток 9 ваттовой энергосберегающей лампы примерно сопоставим со световым потоком обычной лампы накаливания мощностью 45 ватт, т.е. при одинаковой светоотдаче, энергопотребление энергосберегающих ламп в 5 раз меньше, чем у обычных ламп).

    - цветовой оттенок (цветовая температура) излучаемого света «теплый белый» (2700 К) (наиболее приближен к свету обычной лампочки, поэтому более привычен для восприятия дома)

    - предпочтение отдавалось спералевидным лампам (хотя одна лампа куплена с шарообразной колбой)

    Выбор оказался ограничен лишь мощностью лампы, намного чаще в продаже встречаются лампы мощностью от 11 до 20 ватт. По всем остальным параметрам ограничений в выборе практически не было.

    Энергосберегающие лампы какие лучше

    Итак, были куплены 6 ламп:

    1. Camelion LH 9- AS-M/827/E27

    2. Feron ELT 19 9W E27 2700K

    3. Ecola SELM/9W/E27/2700K

    4. Elmakst EL-MCSP-E27-9W

    5. Jazzway PESL-SF 9 B т /827 E27

    6. Navigator NCL-G45-09-827-E27

    За место одной из вышеперечисленных ламп хотел купить одну лампу произведенную ВЭЛЗ (Владивостокским электроламповым заводом), однако в магазине не оказалось лампы, подходившей мне по вышеуказанным характеристикам, а для чистоты эксперимента хотелось, чтобы характеристики ламп были все-таки одинаковыми.

    Итак, выбор сделан, что имеем общего:

    - все вышеперечисленные лампы произведены в Китае (в том числе и в Гонконге).

    - все лампы упакованы в картонные коробочки, что предотвращает их случайное повреждение, при транспортировке и хранении.

    Ну а теперь о каждой в отдельности поподробнее.

    1. Camelion LH 9- AS-M/827/E27 Энергосберегающие лампы какие лучше

    Стоимость лампы 170 рублей.

    Заявленный средний срок службы 8 лет* (при работе 3 часа в сутки) или 8000 часов

    Световой поток 450 Lm (Люмен)

    Индекс цветопередачи ( Ra). 82

    Температурный диапазон эксплуатации -15 С + 40 С

    Гарантия производителя 1 год. (продавец гарантию не дал)

    Достаточно хорошее описание на упаковке, кроме того внутри прилагается инструкция.

    Лампа имеет функцию плавного старта в течение 2-3 секунд для обеспечения нормального срока службы. При этом мерцаний не наблюдается, просто световой поток от лампы при включении соответствует 40% от номинального и в течение 2-х минут достигает максимума. Благодаря функции «плавного старта» частые включения и выключения лампы не сказываются на её сроке службы. Это позволяет лампе выдерживать более 500 000 включений – при том условии, если лампа перед очередным включением была выключена минимум на 2 минуты, для того, чтобы элемент в схеме электронного пускорегилирующего аппарата (ПРА) мог за это время охладиться. К концу срока службы световой поток лампы снижается, но не более чем на 20%. Лампа не пригодна для работы со стандартными регуляторами уровня яркости, таймерами или фотоэлементами, кроме того работа в цепях с выключателями, имеющими встроенную лампу тлеющего разряда («неонку») или светодиод. Использование в таких условиях приводит к преждевременному выходу из строя лампы.

    2. Feron ELT 19 9W E27 2700K Энергосберегающие лампы какие лучше

    Стоимость лампы 190 рублей.

    Срок службы 8 000 часов

    Световой Поток 405 Lm

    Индекс цветопередачи ( Ra ): нет данных

    Температурный диапазон эксплуатации -15 С + 40 С

    Гарантия производителя нет данных. (продавец гарантию не дал)

    Хорошее описание на упаковке, кроме того внутри прилагается инструкция.

    При подаче питания задержка в зажигании составляет 2-3 секунды (скорее всего имеется функция "плавный старт", как и в лампе Camelion, однако стоит учесть этот факт, если у Вас в люстре будут стоять лампы разных производителей и некоторые из них будут марка Ферон или Камелион, то при включении света они будут зажигаться позднее всех остальных, что не всем может показаться нормальным), также не пригодна для использования с выключателями со светодиодами, с регуляторами яркости.

    3. Ecola SELM/9W/E27/2700K Энергосберегающие лампы какие лучше

    Стоимость лампы 150 рублей.

    Срок службы 8 000 часов (при условии эксплуатации 3 часа в сутки)

    Световой Поток 480 Lm

    Индекс цветопередачи ( Ra ): нет данных

    Температурный диапазон эксплуатации от -25 С (по верхнему потолку нет данных)

    Гарантия производителя нет данных. (продавец гарантию не дал)

    Плохое описание на упаковке (вплоть до того, что нет данных о производителе, узнать можно только страну производителя по штрих-коду) внутри инструкция НЕ прилагается.

    Не использовать с регуляторами света, электронными стартерами, реле времени и световыми датчиками.

    Особенностью лампы оказался тот факт, что температура цвета (цветовой оттенок) данной лампы ближе к лампам с показателем 4200 К (белый свет), в отличие от остальных ламп, данная лампа светит белым, а не желтоватым светом (хотя и на коробке и на самой лампе стоит маркировка 2700 К), может быть это связано с самым высоким, среди сравниваемых ламп световым потоком, который заявлен для этой лампы 480 Lm .

    4. Elmakst EL-MCSP-E27-9W Энергосберегающие лампы какие лучше

    Стоимость лампы 120 рублей.

    Срок службы 8 000 часов

    Световой Поток 350 Lm

    Индекс цветопередачи ( Ra ): нет данных

    Температурный диапазон эксплуатации от -25 С +40 С

    Гарантия производителя нет данных. (продавец гарантию не дал)

    Хорошее описание на упаковке, кроме того внутри прилагается инструкция.

    Мгновенное включение лампы без мерцания. Сразу после включения лампы световой поток составляет около 60%, полное разгорание достигается примерно через 1-2 минуты, кроме того, указано, что световой поток на протяжение всего срока службы стабилен. Нельзя использовать с регуляторами света, электронными стартерами, реле времени и световыми датчиками. Рекомендуется, чтобы промежутки времени между включением и выключением лампы были не менее 2 минут. (опять же, для охлаждения элементов ЭПРА).

    5. Jazzway PESL-SF 9 B т /827 E27 Энергосберегающие лампы какие лучше

    Стоимость лампы 75 рублей.

    Срок службы 8 лет (8 000 часов)

    Световой Поток 440 Lm

    Индекс цветопередачи ( Ra ): нет данных

    Температурный диапазон эксплуатации от -25 С +40 С

    Гарантия производителя нет данных. (продавец гарантию не дал)

    Хорошее описание на упаковке, внутри инструкция НЕ прилагается.

    Нельзя использовать с регуляторами света, электронными стартерами, реле времени и световыми датчиками, фотоэлементами и датчиками движения.

    6. Navigator NCL-G45-09-827-E27 Энергосберегающие лампы какие лучше

    Стоимость лампы 210 рублей.

    Срок службы 10 000 часов

    Световой Поток 450 Lm

    Индекс цветопередачи ( Ra ): более 82

    Температурный диапазон эксплуатации от -25 С +40 С

    Гарантия производителя 1 год. Гарантия продавца 1 год

    Хорошее описание на упаковке, внутри есть инструкция.

    Дополнительной особенностью лампы, кроме того, что она шарообразной, а не спиралевидной формы является то, что внутри колбы, находится спираль, т.е. пары ртути находятся в двойной стеклянной колбе. По моим наблюдениям, данная лампа дольше всех остальных набирает свой максимальный световой поток (может быть это связано с двойной колбой). Лампу также нельзя использовать с диммерами (регуляторами яркости), реле времени и т.д.

    Все энергосберегающие лампы содержат в себе пары ртути порядка 2-5 мг. Поэтому утилизация отработанных энергосберегающих ламп должна производиться на специализированных предприятиях. Выкидывая энергосберегающую лампу в мусоропровод или контейнерный бак, Вы подвергаете себя и окружающих риску ртутного отравления.

    В случае, если лампы была разбита в помещении, следует аккуратно собрать осколки стеклянной трубки. Место, где была разбита лампа, следует обработать 0,2% раствором марганцевокислого калия (марганцовка), после чего проветрить помещение.

    На данный момент во Владивостоке я нашел 2 компании, которые принимают на утилизацию отработанные энергосберегающие лампы:

    ООО «ПримТехнополис». утилизация ртутьсодержащих ламп,

    г. Владивосток, ул. Окатовая, д.62, тел. (423) 228-10-15; 228-10-16 работает пн-пт с 9.00 до 18.00

    Стоимость утилизации 1 лампы 20 рублей.

    Г. Владивосток, ул. Иртышская 23 оф.4 тел. 236-12-81 работает пн-пт с 9.00 до 18.00

    Стоимость утилизации 1 лампы 23,6 рубля. (оплата только по незналичному расчету)

    Помните! Сдавая энергосберегающие лампы в переработку, вы не только заботитесь о своем здоровье и здоровье окружающих, но и помогаете природе. На получение ртути, стекла и алюминия из отходов требуется гораздо меньше энергии, чистой воды и воздуха, чем на их производство из первичного минерального сырья.

    Ну и в заключении…

    Самым главным и определяющим фактором для многих все-таки останется цена энергосберегающей лампы и эффективность от её использования, которая напрямую зависит от «жизнеспособности» лампы (среднего срока службы), конечно, никто не застрахован от брака и можно купить лампу за 75 рублей, которая прослужит 8 000 часов или лампу за 210 рублей, которая, при неправильном её использовании (реле регулировки, светодиодные выключатели и т.д.) может перегореть за считанные месяцы.

    Поэтому, можно постараться и примерно рассчитать а сколько должна прослужить энергосберегающая лампа, чтобы затраты на её покупку и утилизацию окупили себя по сравнению с использованием обычной лампы накаливания.

    Итак, предположим, что мы взяли для сравнения 2 лампы: энергосберегающую и обычную лампу накаливания (расчет произведем по усредненным данным) по примерно одинаковому для обеих ламп световому потоку (обычная - 60 Вт. энергосберегающая – 11 Вт)

    Таким образом, получается, что если энергосберегающая лампа прослужит хотя бы 2000 часов (менее 2 лет, при использовании её по 3 часа в день), то она полностью окупает затраты на приобретение и утилизацию.

    Теперь осталось дело за малым – проверить на практике, какие из вышеперечисленных ламп смогут окупить свое приобретение.

    О результатах тестирования я буду сообщать в других статьях, кроме того, планируется тестирование и других марок энергосберегающих ламп.

    Также о своих наблюдениях и личном опыте, рекомендациях Вы можете сообщить нам и мы обязательно поделимся этой информаций с посетителями нашего интернет-портала.

    Статья является собственностью интернет-портала «Строительный Гипермаркет», при использовании материалов из статьи активная гиперссылка на портал ОБЯЗАТЕЛЬНА.

    Новости портала

    У интернет-портала "Строительный Гипермаркет" появился новый партнер

    Напоминаем, что до открытия XX строительной специализированной выставки осталось менее 1 недели.

    *****

    Энергосберегающие лампы какие лучше Какую энергосберегающую лампочку лучше выбрать?

    Как известно, в ноябре 2009 года вышел закон «Об энергосбережении и повышении энергетической эффективности», исходя из которого с 2014 года Россия должна полностью отказаться от обычных лампочек и перейти на энергосберегающие лампы. С января 2013 года запрещена продажа ламп накаливания мощностью 75 Вт и выше. Конечно, энергосбережение — вопрос государственной важности, и наверное отказ от ламп накаливания с их низким КПД был неизбежен. Не претендуя на роль противников прогресса, рассмотрим однако плюсы и минусы энергосберегающих ламп.

    Сегодня существуют 3 основных типа ламп: лампы накаливания. производство которых, по-видимому, скоро будет прекращено, газораз­рядные (люминесцентные) энергосберегающие лампы и «новое слово» — светодиод­ные лампы. Галогенные лампы и оптоволоконные рассматри­вать не будем — они пока редко используются в быту.

    Обычная лампочка накалива­ния представляет собой гер­метичную стеклянную колбу с вольфрамовой спиралью. Под действием тока спираль рас­каляется и выделяет световую и тепловую энергию. Основ­ные недостатки традиционных ламп накаливания всем известны: чрезвычайно низ­кий КПД (большая часть энер­гии — примерно 95% — ухо­дит на нагрев окружающего воздуха) и сравнительно малый срок службы (750 -1000 часов). К достоинствам этих ламп можно отнести низкую цену, относительную ком­пактность, малую зависи­мость от пониженного напря­жения в сети и стабильную работу при низких температу­рах.

    В люминесцентных лам­пах во время работы проис­ходит электрический разряд в парах ртути, находящихся под низким давлением. В резуль­тате возникает ультрафиоле­товое излучение, которое, проходя через слой люмино­фора, нанесённый на вну­треннюю поверхность лампы, преобразуется в видимый свет. Преимущества люми­несцентных энергосберегаю­щих ламп следующие. Во-первых, их световая отда­ча при одинаковой потребля­емой мощности в 5 раз боль­ше, чем у ламп накаливания. То есть, люминесцентная лампа мощностью 20 Вт будет светить с такой же яркостью, как и лампа накаливания мощностью 100 Вт. Во-вторых, срок службы этих ламп — зна­чительно больший (до 8000 часов). В-третьих, есть возможность выбора ламп исходя из маркировки по спектральному составу света — от 2700°К (тёплый белый свет – лампы с индек­сом 827) до 6500°К(дневной свет — лампы с индексом 860). Также существуют про­межуточные варианты — лампы с индексом 835, даю­щие «прохладный» свет, и лампы с индексом 840 с «холодным» светом.

    А теперь о недостатках и минусах люминесцентных ламп.

    1. Главный их недостаток — это цена. Безымянные лампы с непредсказуемо коротким сроком службы можно купить от 100 до 200 руб. Лампы серьёзных производителей действи­тельно могут отработать ого­воренный ресурс (а это — более 4-х лет при работе по 6 часов в сутки. Правда, гарантию на такой срок всё равно никто не даёт!). И их цена уже зашкаливает за 350 руб.
    2. Второй минус — это проблемы с утилизацией таких ламп. Они содержат вредные пары ртути (а то и саму ртуть), и выбрасывать их в мусоропровод нельзя. А централизованный приём отработавших ламп до сих пор не налажен.
    3. Третий — такие лампы нежелательно использовать там, где источник света часто включается и выключается, например, в ванной или в туа­лете. В таком режиме они перегорают значительно быстрее.
    4. Четвёртый недостаток — на холоде или при пониженном напря­жении в электросети люми­несцентные лампы могут даже не загореться, что огра­ничивает их применение в районах с нестабильным напряжением (а ведь и в ближнем Подмосковье с этим — большие проблемы). Как следствие — невозможно использовать устройства для плавного включения ламп.
    5. Пятый минус — не в каждый светильник можно ввернуть такую лампу и не под каждый плафон она подойдёт. Ведь вкручивать такую лампу в патрон надо осторожно, удерживая её только за цоколь, чтобы не повредить. Поэтому использование пла­фонов, имеющих сужение в верхней части, исключается.
    6. Шестой недостаток в том, что спектр этих ламп всё-таки непривычен человеческому глазу. Даже при использова­нии ламп с индексом 827 (2700°К) цвета предметов выглядят иначе, чем при свете обычных ламп накаливания.
    7. Седьмой недостаток — эффект мерцания («стробоскопичность»), который хоть и заметен только на движущих­ся предметах (лопастях вен­тилятора, например), но не лучшим образом воздейству­ет на человека принося вред зрению у некоторых людей. Кстати, имен­но поэтому люминесцентные лампы запрещено использо­вать на производстве для освещения рабочего места у станков с механизмами вра­щения. Особенный вред здоровью могут нанести дешевые подделки.
    8. И, наконец, — через год эксплуатации яркость таких ламп уменьшается из-за выгорания люминофора и образования налёта металла на колбе от испаряющихся электродов.

    Светодиодные лампы

    Это лампы нового поколения, которые включают в себя несколько светодиодов повы­шенной яркости. Основа светодиода — полупроводнико­вый кристалл. Светодиод пре­образует электрический ток в световое излучение (явление электролюминесценции). Свечение возникает при рекомбинации электронов и дырок в области перехода. Светодиодные лампы лишены ряда недо­статков люминесцентных энергосберегающих ламп. Такие лампы — ещё более экономичны и долговечны, нежели люминесцентные лампочки. Срок их службы – от 50 до 100 тысяч часов, а световая отдача достигает 100 люме­нов на 1 Вт (у ламп накалива­ния — от 5 до 8 Лм/Вт, а у люминесцентных энергосбе­регающих ламп — примерно 30-40 Лм/Вт). Они – относи­тельно ударо- и вибропрочны (поскольку нить накаливания отсутствует, а колба светоди­одной лампы во многих случа­ях изготовлена из пластмассы), не содержат ртути и не требуют дорогостоящей ути­лизации. Эти лампы могут иметь совершенно различные оттенки излучаемого света и нечувствительны к перепадам напряжения в электросети.

    Основной недостаток свето­диодных ламп на данный момент — цена. Импортные лампы стоят от 700 до 1000 рублей и выше, а в Рос­сии их производство только налаживается — ряд предпри­ятий в настоящее время осваи­вает выпуск таких ламп. Пред­полагается, правда, что к 2014-му году стоимость светодиод­ных ламп сравняется со стои­мостью люминесцентных…

    Если энергосберегающая лампа все же разбилась то несмотря на то, что в ней во много раз меньше ртути чем даже в обычном градуснике, тщательно выметите осколки и побыстрее выбросьте их из квартиры (дома), а пол протрите перекисью водорода. Совет что называется “народный” но по многим отзывам действует.

    Лучшие марки и производители энергосберегающих лампочек:

    Основные термины – что такое:

    • Люмен (лм) — единица измерения светового потока, позволяющая оценить яркость лампы
    • Ватт (Вт) — электрическая мощность источника света
    • Срок службы (ч) — расчетный период работы лампы (иногда указывается в годах при средней продолжительности работы 3 ч/сут.)
    • Цикл включений и выключений — максимальное количество возможных замыканий и размыканий электрической цепи с одной и той же рабочей лампой без повреждения последней
    • Цвет освещения (К) — значение цветовой температуры, которая описывает спектр излучения источника (у лампы накаливания он может быть 2700 К, у лампы дневного света — 6500 К)
    • Время запуска — интервал, в течение которого лампа достигает 60% заявленной производителями яркости
    • Пригодность для регулирования яркости — возможность использования лампы совместно с диммером
    • Содержание ртути (мг) — количество паров данного металла в энергосберегающей лампе

    Ниже другие записи по теме "Как сделать своими руками - домохозяину!"

    Энергия из эфира своими руками

    Генератор свободной энергии своими руками: схема

    December 17, 2015

    Основная масса людей убеждена, что энергию для существования можно получать только из газа, угля или нефти. Атом достаточно опасен, строительство гидроэлектростанций – очень трудоемкий и затратный процесс. Ученые всего мира утверждают, что запасы природного топлива могут скоро закончиться. Что же делать, где же выход? Неужели дни человечества сочтены?

    Энергия из эфира своими руками

    Все из ничего

    Исследования видов «зеленой энергии» в последнее время ведутся все интенсивней, так как это является путем в будущее. На нашей планете изначально есть все для жизни человечества. Нужно только уметь это взять и использовать на благо. Многие ученые и просто любители создают такие устройства? как генератор свободной энергии. Своими руками, следуя законам физики и собственной логике, они делают то, что принесет пользу всему человечеству.

    Так о каких явлениях идет речь? Вот несколько из них:

    • статическое или радиантное природное электричество;
    • использование постоянных и неодимовых магнитов;
    • получение тепла от механических нагревателей;
    • преобразование энергии земли и космического излучения;
    • имплозионные вихревые двигатели;
    • тепловые солнечные насосы.

    В каждой из этих технологий для высвобождения большего объема энергии используется минимальный начальный импульс.

    Как сделать генератор свободной энергии своими руками? Для этого нужно иметь сильное желание изменить свою жизнь, много терпения, старание, немного знаний и, конечно, необходимые инструменты и комплектующие.

    Энергия из эфира своими руками

    Вода вместо бензина? Что за глупости!

    Двигатель, работающий на спирте, наверное, найдет больше понимания, чем идея разложения воды на молекулы кислорода и водорода. Ведь еще в школьных учебниках сказано, что это совершенно нерентабельный способ получения энергии. Однако уже существуют установки для выделения водорода способом сверхэффективного электролиза. Причем стоимость полученного газа равна стоимости кубометров воды, использованных при этом процессе. Не менее важно, что затраты электричества тоже минимальны.

    Скорее всего, в ближайшем будущем наряду с электромобилями по дорогам мира будут разъезжать машины, двигатели которых будут работать на водородном топливе. Установка сверхэффективного электролиза – это не совсем генератор свободной энергии. Своими руками ее достаточно трудно собрать. Однако способ непрерывного получения водорода по данной технологии можно совместить с методами получения зеленой энергии, что повысит общую эффективность процесса.

    Энергия из эфира своими руками

    Один из незаслуженно забытых

    Таким устройствам, как бестопливные двигатели, совершенно не требуется обслуживание. Они абсолютно бесшумны и не загрязняют атмосферу. Одна из самых известных разработок в области экотехнологий – принцип получения тока из эфира по теории Н. Теслы. Устройство, состоящее из двух резонансно настроенных трансформаторных катушек, является заземленным колебательным контуром. Изначально генератор свободной энергии своими руками Тесла сделал в целях передачи радиосигнала на дальние расстояния.

    Если рассматривать поверхностные слои Земли как огромный конденсатор, то можно представить их в виде одной токопроводящей пластины. В качестве второго элемента в этой системе используется ионосфера (атмосфера) планеты, насыщенная космическими лучами (так называемый эфир). Через обе эти «пластины» постоянно текут разнополюсные электрические заряды. Чтобы «собрать» токи из ближнего космоса, необходимо изготовить генератор свободной энергии своими руками. 2013 год стал одним из продуктивных в этом направлении. Всем хочется пользоваться бесплатным электричеством.

    Энергия из эфира своими руками

    Как сделать генератор свободной энергии своими руками

    Схема однофазного резонансного устройства Н. Тесла состоит из следующих блоков:

    1. Две обычные аккумуляторные батареи по 12 В.
    2. Выпрямитель тока с электролитическими конденсаторами.
    3. Генератор, задающий стандартную частоту тока (50 Гц).
    4. Блок усилителя тока, направленный на выходной трансформатор.
    5. Преобразователь низковольтного (12 В) напряжения в высоковольтное (до 3000 В).
    6. Обычный трансформатор с соотношением обмоток 1:100.
    7. Повышающий напряжение трансформатор с высоковольтной обмоткой и ленточным сердечником, мощностью до 30 Вт.
    8. Основной трансформатор без сердечника, с двойной обмоткой.
    9. Понижающий трансформатор.
    10. Ферритовый стержень для заземления системы.

    Все блоки установки соединяются согласно законам физики. Система настраивается опытным путем.

    Энергия из эфира своими руками

    Неужели все это правда?

    Может показаться, что это абсурд, ведь еще один год, когда пытались создать генератор свободной энергии своими руками - 2014. Схема, которая описана выше, просто использует заряд аккумулятора, по мнению многих экспериментаторов. На это можно возразить следующее. Энергия поступает в замкнутый контур системы от электрополя выходных катушек, которые получают ее от высоковольтного трансформатора благодаря взаимному расположению. А зарядом аккумулятора создается и поддерживается напряженность электрического поля. Вся остальная энергия поступает из окружающей среды.

    Бестопливное устройство для получения бесплатного электричества

    Известно, что возникновению магнитного поля в любом двигателе способствуют обычные катушки индуктивности, изготовленные из медного или алюминиевого провода. Чтобы компенсировать неизбежные потери вследствие сопротивления этих материалов, двигатель должен работать непрерывно, используя часть вырабатываемой энергии на поддержание собственного поля. Это значительно снижает КПД устройства.

    В трансформаторе, работающем от неодимовых магнитов, нет катушек самоиндукции, соответственно и потери, связанные с сопротивлением, отсутствуют. При использовании постоянного магнитного поля токи вырабатываются ротором, вращающимся в этом поле.

    Энергия из эфира своими руками

    Как сделать небольшой генератор свободной энергии своими руками

    Схема используется такая:

    • взять кулер (вентилятор) от компьютера;
    • удалить с него 4 трансформаторные катушки;
    • заменить небольшими неодимовыми магнитами;
    • ориентировать их в исходных направлениях катушек;
    • меняя положение магнитов, можно управлять скоростью вращения моторчика, который работает абсолютно без электричества.

    Такой почти вечный двигатель сохраняет свою работоспособность до извлечения из цепи одного из магнитов. Присоединив к устройству лампочку, можно бесплатно освещать помещение. Если взять более мощный движок и магниты, от системы можно запитать не только лампочку, но и другие домашние электроприборы.

    О принципе работы установки Тариэля Капанадзе

    Этот знаменитый генератор свободной энергии своими руками (25кВт, 100 кВт) собран по принципу, описанному Николо Тесла еще в прошлом столетии. Данная резонансная система способна выдавать напряжение, в разы превосходящее начальный импульс. Важно понимать, что это не «вечный двигатель», а машина для получения электричества из природных источников, находящихся в свободном доступе.

    Для получения тока в 50 Гц используются 2 генератора с прямоугольным импульсом и силовые диоды. Для заземления используется ферритовый стержень, который, собственно, и замыкает поверхность Земли на заряд атмосферы (эфира, по Н. Тесла). Коаксиальный кабель применяется для подачи мощного выходного напряжения на нагрузку.

    Говоря простыми словами, генератор свободной энергии своими руками (2014, схема Т. Капанадзе), получает только начальный импульс от 12 В источника. Устройство способно постоянно питать током нормального напряжения стандартные электроприборы, обогреватели, освещение и так далее.

    Собранный генератор свободной энергии своими руками с самозапиткой устроен так, чтобы замкнуть цепь. Некоторые умельцы пользуются таким способом для подзарядки аккумулятора, дающего начальный импульс системе. В целях собственной безопасности важно учитывать тот факт, что выходное напряжение системы имеет высокие показатели. Если забыть об осторожности, можно получить сильнейший удар током. Так как генератор свободной энергии своими руками 25кВт может принести как пользу, так и опасность.

    Энергия из эфира своими руками

    Кому все это нужно?

    Сделать генератор свободной энергии своими руками может практически любой человек, знакомый с основами законов физики из школьной программы. Электропитание своего собственного жилища можно полностью перевести на экологическую и доступную энергию эфира. С использованием таких технологий снизятся транспортные и производственные расходы. Атмосфера нашей планеты станет чище, остановится процесс «парникового эффекта».

    С бестопливным не так уж все и сложно просто надо знать теорию. У Капанадзе это выполнен так. Зеленая коробка это маленькая тесла выполненная на феррите что бы максимально снизить частоту резонанса до 5 - 6 Кгц. далее идет через разрядник на колебательный контур настроенный в резонанс с этой Теслой, по скольку емкостной связи нет то этот контур дает существенную прибавку по току. то есть принцип приемника Попова, далее Капанадзе делает что? Через разрядник (что бы ограничить и стабилизировать напряжение подает на те 4 витка толстого провода (опять таки индуктивно не связанную с контуром а эти 4 витка заземляет. Колебательный контур расценивает это как независимый источник энергии. получается сильный токовый резонанс с одновременным поддержанием и стабилизацией работы резонансного контура. Ну а как снимать это вопрос уже второй. Сложность это разрядники они горят по этому говорить о долговечности не приходится! То что нарисовано выше это просто бред.

    Энергия из эфира своими руками

    Судя по публикациям последних лет,эта тема постепенно заводится в тупик.Какие-то противоречивые рассуждения,демонстрация роликов,от которых только два чувства возникают,смех или огорчение.Темой свободной энергии заинтересовался четыре года назад.За это время было собрано много различных схем и конструкций и лишь одна собранная работала два года,но она была маломощная,в нагрузке два светодиода.Попытки увеличить мощность ,используя эту-же схему не привели к успеху.

    Юрий 11 апреля 2017, 22:36

    Волков бояться - в лес не ходить.

    Энергия из эфира своими руками

    Пока сидим на монополии эл. эн нефти газа это не увидит свет а если узнают что дома стоит а государственным не пользуешься накажут

    Юрий виталий концевой 16 апреля 2017, 20:21

    Кто вас накажет за использование открытого воздуха для своего жизнеобеспечения?
    Те, кто якобы могут наказать, прикрываются туманными законами выдуманными вразрез с Конституцией. А сами за частую, туповатые и трусливые личности.
    Так что, если ваш прибор не мешает окружающим, не засоряет среду, - пользуйтесь им и помогайте другим делать подобные устройства.

    Вадим 7 сентября 2016, 7:18

    Берем все дружно и мотаем! Придумываем чтото новое! Пускай безумное! А потом глядиш один из скептиков становится изобретателем! Просто вам в голову вбили что придумывать и изобретать должны професора из университетов которые нихрена не понимают! Просто купил статус и все! Приведу пример:два пацана придумали необычные поршневые кольца изготовили их пришли показать, и вот один професор им сказал :(вы кто такие? Я професор а вы кто? Или вы говорите что ето есть розработка моя и вы были асистентами или никак!) тут мысль байки такова! нахер всех професоров, магнатов, и т д! Изобретаем делимся достижениями и получаем респект и уважуху от одноземлян их внуков и правнуков и т д!

    Энергия из эфира своими руками

    Уже более десяти лет хожу по инстанциях и как на камне ,имею до 10 патентов во многих странах мира более того и пилотные установки к ним, по альтернативным видам энергии.но увы,ну не профессор я. этим всё сказано, как же ,их обошли.

    Вы наверное правы,пока существует пути наживы так и будет, не дадут потому,что сидят на традиционных источниках энергии, альтернативная энергия, это крест на традиционные источниками энергии,которые кстати подходят к концу иссякают в априори. Но все же хочется надеяться что не всегда так будет. Вот уже несколько лет занимаюсь этой проблемой,надо сказать не безуспешно имею ряд патентов во нескольких странах мира. но вот с реализацией проектов пока на месте.

    Энергия из эфира своими руками

    Юрий Алексей Калинин 11 апреля 2017, 22:41

    Абсолютно верно!
    Делать всё самим и делиться с остальными, обязательно делиться.

    Энергия из эфира своими руками

    10 загадочных фотографий, которые шокируют Задолго до появления Интернета и мастеров "Фотошопа" подавляющее большинство сделанных фото были подлинными. Иногда на снимки попадали поистине неверо.

    Энергия из эфира своими руками

    Топ-10 разорившихся звезд Оказывается, иногда даже самая громкая слава заканчивается провалом, как в случае с этими знаменитостями.

    Энергия из эфира своими руками

    Никогда не делайте этого в церкви! Если вы не уверены относительно того, правильно ведете себя в церкви или нет, то, вероятно, поступаете все же не так, как положено. Вот список ужасных.

    Энергия из эфира своими руками

    Наши предки спали не так, как мы. Что мы делаем неправильно? В это трудно поверить, но ученые и многие историки склоняются к мнению, что современный человек спит совсем не так, как его древние предки. Изначально.

    Энергия из эфира своими руками

    9 знаменитых женщин, которые влюблялись в женщин Проявление интереса не к противоположному полу не является чем-то необычным. Вы вряд ли сможете удивить или потрясти кого-то, если признаетесь в том.

    Энергия из эфира своими руками

    Как выглядеть моложе: лучшие стрижки для тех, кому за 30, 40, 50, 60 Девушки в 20 лет не волнуются о форме и длине прически. Кажется, молодость создана для экспериментов над внешностью и дерзких локонов. Однако уже посл.

    *****

    Свободная Энергия электричество из эфира

    Энергия из эфира своими руками

    Энергия из эфира своими руками

    Предлагаю пробовать повторить. Оговорюсь, устройство не мое. Этот ролик в интернете пропал. Хорошо в свое время скачал его и пересохранил. Дополнительную информацию можно найти в сети по запросу "Свободная энергия эфира" На видео подробно показан состав устройства. Катушка на пластиковой трубе(канализационная) - диаметр, длина, количество витков и их шаг отчетливо видны, разрядник искровой - главный элемент, конденсатор от микроволновки, трансформатор от микроволновки на 2000 Вольт, диод от микроволновки, автотрансформатор для запитки устройства от сети. Так вот утверждается, что от сети поступает не столько энергии, сколько отдается на выходе 🙂 На до бы это провеить 🙂 Если у кого, чего получится - отпишите Пожалуйста. Думаю всем будет интересно.

    Video of kapanadze generator replica kapagen Свободная электро энергия

    *****

    Представляем Вашему вниманию очень крутую видеоподборку по самоделкам к мотоблоку:
    1. Картофелесажалка для мотоблока своими руками
    2. Самодельные культиваторы для мотоблока
    3. Самодельные плоскорезы для мотоблока
    4. Самодельный окучник для мотоблока
    5. Самодельные косилки для мотоблока
    6. Самодельные грунтозацепы для мотоблока
    7. Самодельная картофелекопалка для мотоблока
    8. Самодельный дровокол для мотоблока
    9. Самодельный снегоуборщик к мотоблоку
    10. Самодельная сеялка для мотоблока
    11. Самодельный прицеп к мотоблоку

    Как самому переделать шуруповерт с Ni-Ca на литий-ионные АКБ или в шуруповерт, работающий от сетевой 220 В. Подробное описание и крутая видеоподборка из самых лучших роликов по теме. Оживи свой шуруповерт уже сейчас!

    Самоделки из двигателя от стиральной машины:

    1. Как подключить двигатель от старой стиральной машины через конденсатор или без него
    2. Самодельный наждак из двигателя стиральной машинки
    3. Самодельный генератор из двигателя от стиральной машины
    4. Подключение и регулировка оборотов коллекторного двигателя от стиральной машины-автомат
    5. Гончарный круг из стиральной машины
    6. Токарный станок из стиральной машины автомат
    7. Дровокол с двигателем от стиральной машины
    8. Самодельная бетономешалка

    Трансформатор Тесла на качере Бровина своими руками и съем энергии.

    Радиантная энергия. Беспроводная передача энергии.

    Из чего состоит вселенная? Вакуум, то есть пустота, или эфир - нечто из которого состоит все сущее? В подтверждение теории эфира Интернет предложил личность и исследования физика Николы Тесла и естественно его трансформатор,представленный классической наукой, как некое высоковольтное устройство по созданию спец-эффектов в виде электрических разрядов.

    Особых пожеланий, предпочтений по длине и диаметру катушек трансформатора Тесла не нашел. Вторичная обмотка была намотана проводом 0,1мм на трубе пвх диаметром 50мм. Так сложилось что длина намотки составила 96 мм. Намотка велась против часовой стрелки. Первичная обмотка - медная трубка от холодильных установок диаметром 5 мм.

    Запустить собранный коллайдер, можно простым способом. В интернет предлагаются схемы на резисторе, одном транзисторе и двух конденсаторах - качер Бровина по схеме Михаила (на форумах под ником МАГ). Трансформатор тесла после установки направления витков первичной обмотки так, как и на вторичной заработал, о чем свидетельствуют - небольшой объект похожий на плазму на конце свободного провода катушки, лампы дневного света на расстоянии горят, электричество, вряд ли это электричество в обычном понимании, по одному проводу в лампы поступает. Во всем металлическом находящемуся рядом с катушкой присутствует электростатическая энергия. В лампах накаливания - очень слабое свечение синего цвета.

    Если цель сборки трансформатора тесла - получение хороших разрядов, то данная конструкция, на основе качера Бровина, для этих целей абсолютно не пригодна. То же самое мугу сказать об аналогичной катушке длинной 280 мм.

    Возможность получения обычного электричества. Замеры осциллографом показали частоту колебаний на катушке съема порядка 500 кГц. Поэтому в качестве выпрямителя был использован диодный мост из полупроводников используемых в импульсных источниках питания. В начальной версии - автомобильные диоды шоттки 10SQ45 JF, затем быстрые диоды HER 307 BL.

    Ток потребления всего трансформатора без подключения диодного моста 100 ма. При включении диодного моста в соответствии со схемой 600 ма. Радиатор с транзистором КТ805Б теплый, катушка съема, слегка греется. Для катушки съема использована медная лента. Можно использовать любой провод 3-4 витка.
    Ток съема при включенном двигателе и только что заряженнном аккумуляторе порядка 400 ма, Если подключить двигатель на прямую к аккумулятору, ток потребления двигателя ниже. Измерения проводились стрелочным амперметорм советского производства, поэтому на особую точность не претендуют. При включенной тесле абсолютно везде (!) присутствует "горячая" на ощупь энергия.

    Конденсатор 10000мF 25V без нагрузки заряжается до 40V, старт двигателя происходит легко. После запуска двигателя падение напряжения, двигатель работает на 11.6V.

    Напряжение меняется при перемещении катушки съема вдоль основного каркаса. Минимальное напряжение при размещении катушки съема в верхней части и соответственно максимальное в нижней его части. Для данной конструкции максимальное значение напряжения удавалось получить порядка 15-16V.

    Максимального съема по напряжению с использованием диодов шоттки можно добиться располагая витки катушки съема вдоль вторичной обмотки трансформатора Теслы, максимального съема по току - спираль в один виток перпендикулярно вторичной обмотки трансформатора Теслы.

    Разница, в использовании диодов шоттки и быстрых диодов значительна. При использовании диодов шоттки, ток примерно раза в два выше.

    Любые усилия по съему или работа в поле трансформатора тесла уменьшают напряженность поля, уменьшается заряд. Плазма выступает в роле индикатора наличия и силы поля.

    На фотографиях объект, похожий на плазму, отображается лишь частично. Предположительно, для нашего глаза смена 50 кадров в секунду не различима. Тоесть набор постоянно сменяющихся объектов составляющих "плазму" воспринимается нами как один разряд. На боолее качественной аппаратуре съемка не проводилась.
    Аккумулятор, после взаимодействия с токами теслы стремительно приходит в негодность. Зарядное устройство дает полную зарядку, но емкость аккумулятора падает.

    При подключении электролитического конденсатора 47 мкф 400 вольт к аккумулятору или любому источнику постоянного напряжения 12В заряд конденсатора не привысит значение источника питания. Подключаю конденсатор 47 мкф 400 вольт к постоянному напряжению порядка 12В, полученного диодным мостом с катушки съема качера. Через пару-тройку секунд подключаю автомобильную лампочку 12В/21ВТ. Лампочка ярко вспыхивает и сгорает. Конденсатор оказался заряжен до напряжения более 400 вольт.

    На осциллографе виден процесс зарядки электролитического конденсатора 10000 мкф, 25V. При постоянном напряжении на диодном мосте порядка 12-13 вольт, конденсатор заряжается до 40-50 вольт. При том же входном, переменном напряжении, конденсатор в 47 мкф 400V, заряжается до четырехсот вольт.

    Электронное устройство съема дополнительной энернии с конденсатора должно работать по принципу сливного бочка. Ждем зарядки конденсатора до определенного значения либо по таймеру разряжаем конденсатор на внешнюю нагрузку (сливаем накопившуюся энергию). Разряд конденсатора соответствующей емкости даст хороший ток. Таким образом можно получить стандартное электричество.

    При сборке трансформатора Тесла установлено, что статическое электричество, получаемое с катушки тесла, способно заряжать конденсаторы до значений, превышающих их номинал. Целью эксперимента является попытка выяснить заряд каких конденсаторов, до каких значений и при каких условиях возможен максимально быстро.

    Скорость и возможность заряда конденсаторов до предельных значений определеят выбор выпрямителя тока. Проверены следующие выпрямители, показанные на фотографии ( слева на право по эффективности работы в данной схеме) - кенотроны 6Д22С, демпферные диоды КЦ109А, КЦ108А, диоды шоттки 10SQ045JF и прочие. Кенотроны 6Д22С рассчитаны на напряжения 6,3В их необходимо включать от двух дополнительных аккумуляторов по 6,3В либо от понижающего трансформатора с двумя обмотками на в 6,3В. При последовательном подключении ламп к аккумулятору 12В, кенотроны работают не равнозначно, отрицательное значение выпрямленного тока необходимо соединить с минусом аккумуляторной батареи. Прочие диоды, в том числе и "быстрые" - малоэффективны, поскольку имеют незначительные обратные токи.

    В качестве разрядника использована свеча зажигания от автомобиля, зазор 1-1,5мм. Цикл работы устройства следующий. Конденсатор заряжается до значений напряжения достаточного для возникновения пробоя через искровой промежуток разрядника. Возникает ток высокого напряжения способный зажечь лампочку накаливания 220В 60ВТ.

    Ферриты используются для усиления магнитного поля первичной катушки - L1 и вставляются внутрь трубки ПВХ на которой намотан трансформатор тесла. Следует обратить внимание, что ферритовые наполнители должны находиться под катушкой L1 (медная трубка 5 мм) и не перекрывать весь объем трансформатора тесла. В противном случае генерация поля трансформатором Тесла срывается.

    Если не использовать ферриты с конденсатором 0,01 мкф лампа зажигается с частотой прядка 5 герц. При добавлении ферритового сердечника (кольца 45мм 200НН) искра стабильна, лампа горит с яркостью до 10 процентов от возможной. При увеличении зазора свечи, происходит высоковольтный пробой между контактами электролампы к которым крепится вольфрамовая нить. Накал вольфрамовой нити не происходит.

    При предлагаемых, емкости конденсатора более 0,01 мкф и зазоре свечи 1-1.2 мм, по цепи идет преимущественно стандартное (кулоновское) электричество. Если уменьшить емкость конденсатора, то разряд свечи будет состоять из электростатического электричества. Поле генерируемое трансформатором тесла в данной схеме, слабое, лампа светиться не будет. Краткое видео:

    Вторичная катушка трансформатора тесла, представленая на фотографии, намотана проводом 0,1 миллиметра на трубке пвх с внешним диаметром 50 миллиметров. Длинна намотки 280 мм. Величина изолятора между первичной и вторичной обмотками 7 мм. Какого либо прироста мощности по сравнению с аналогичными катушками длинной намотки 160 и 200 мм. не отмечается.

    Ток потребления устанавливается переменным резистором. Работа данной схемы стабильна при токе в пределах двух ампер. При токе потребления более трех ампер или меннее одного ампера, генератрация стоячей волны трансформатором Тесла срывается.

    При увеличении тока потребления с двух до трех ампер, мощность отдаваемая в нагрузку увеличивается на пятьдесят процентов, поле стоячей волны усиливается,лампа начинает гореть ярче. Следует отметить только 10 процентное увеличения яркости свечения лампы. Дальнейшее увеличение тока потребления перерывает генерацию стоячей волны либо сгорает транзистор.

    Начальный заряд аккумулятора составляет 13,8 вольта. В процессе работы данной схемы, аккумулятор заряжается до 14.6-14.8V. При этом емкость аккумулятора падает. Общая продолжительность аккумулятора под нагрузкой составляет четыре-пять часов. В итоге аккумулятор разряжается до 7 вольт.

    Результат работы данной схемы - стабильный высоковольтный искровой разряд. Представляется возможным запуск классического варианта трансформатора Тесла с генератором колебаний на искровом промежутке (разряднике) SGTC (Spark Gap Tesla Coil) Теоретически: это замена в схеме лампы накаливания на первичную катушку трансформатора Тесла. Практически: при установке в цепь вместо электролампы трансформатора Тесла такого же как на фотографии идет пробой между первичной и вторичной обмотками. Высоковольтные разряды до трех саниметров. Требуется подобрать расстояние между первичной и вторичной обмотками, величину искрового промежутка, емкость и сопротивление цепи.

    Если использовать сгоревшую электрическую лампу, то между проводниками к которым крепится вольфрамовая нить, возникает устойчивая высоковольтная электрическая дуга. Если напряжение разряда свечи зажигания можно оценить примерно в 3 киловольта, то дугу лампы накаливания можно оценить в 20 киловольт. Так как лампа имеет емкость. Данная схема может быть использована как умножитель напряжения на основе разрядника.

    Какие либо действия со схемой необходимо проводить только после отключения трансформатора тесла от источника питания и обязательной разрядки всех конденсаторов, находящихся вблизи трансформатора Тесла.

    При работе с данной схемой настоятельно рекомендую использовать разрядник, постоянно подключенный параллельно конденсатору. Он выполняет роль предохранителя от перенапряжений на обкладках конденсатора, способных привести его к пробою либо взрыву.

    Разрядник не даёт зарядиться конденсаторам до максимальных значений по напряжению, поэтому разряд высоковольтного конденсаторов менее 0,1 мкф при наличии разрядника на человека опасен, но не смертелен. Величину искрового промежутка руками не регулировать.

    Пайкой в поле качера электронных компонентов не заниматься.

    Радиантная энергия. Никола Тесла.

    В настоящее время подменяются понятия и радиантной энергии дается иное определение, отличное от свойств описанных Николой Тесла. В наши дни радиантная энергия это - энергия открытых систем таких как энергия солнца, вода, геофизические явления которые могут использованы человеком.

    Если вернутся к первоисточнику. Одно из свойств радиантного тока демонстрировалось Николой Тесла на устройстве - повышающий трансформатор, конденсатор, разрядник подключенный к медной U-образной шине. На короткозамкнутой шине размещены лампы накаливания. По классическим представлениям, лампы накаливания гореть не должны. Электрический ток должен идти по линии с наименьшим сопротивлением, тоесть по меденой шине.

    Для воспроизведения эксперимента был собран стенд. Повышающий трансорматор 220В-10000В 50ГЦ типа ТГ1020К-У2. Во всех патентах Н.Тесла рекомендует в качестве источника питания использовать положительное (однополярное), пульсирующее напряжение. На выходе высоковольтного трансформатора установлен диод, сглаживающий отрицательные пульсации напряжения. На этапе начала заряда конденсатора ток, идущий через диод, сопоставим с коротким замыканием, поэтому для предотвращения выхода из строя диода последовательно включен резистор 50К. Конденсаторы 0.01мкф 16КВ, включены последовательно.

    На фотографии, вместо медной шины, представлен соленоид намотанный медной трубкой диаметром 5мм. К пятому витку соленоида подключен контакт лампочки накаливания 12В 21/5ВТ. Пятый виток соленоида (желтый провод), выбран экспериментально, чтобы лампа накаливания не перегорела.

    Можно допустить, факт наличия соленоида, вводит в заблуждение многих исследователей пытающихся повторить устройства Дональда Смита (американский изобретатель СЕ устройств) Для полной аналогии с классическим вариантом, предложенным Н.Теслой, соленоид был развернут в медную шину, лампа накаливания горит с такой же яркостью и перегорает при перемещении ближе к концам медной шины. Таким образом, математические выкладки, которыми пользуется американский исследователь слишком упрощены и не описывают процессы происходящие в соленоиде. Расстояние искрового промежутка разрядника не значительно влияет на яркость свечения электролампы, но влияет на рост потенциала. Между контактами электролампы, на которых закреплена вольфрамовая нить, происходит высоковольтный пробой.

    Логичным продолжением соленоида в качестве первичной обмотки является и классический вариант трансформатора Н.Тесла.

    Что за ток и каковы его характеристики на участке между разрядником и обкладкой конденсатора. То есть в медной шине в схеме предлагаемой Н.Тесла.

    Если длина шины порядка 20-30 см. то электрическая лампа, закрепленная на концах медной шины не горит. Если размер шины увеличить до полутора метров лампочка начинает гореть, вольфрамовая нить раскаляется и светится привычным ярко-белым светом. На спирале лампы (между витками вольфрамовой нити) присутствует голубоватое пламя. При значительных "токах", обусловленных увеличением длины медной шины температура увеличивается, лампа темнеет, вольфрамовая нить точечно выгорает. Ток электронов в цепи прекращается, на участке выгорания вольфрама появляется энергетическая субстанция холодного, голубого цвета:

    В эксперименте использовался повышающий трансформатор - 10КВ, с учетом диода максимальное напряжение составит 14КВ. По логике - максимальный потенциал всей схемы должен быть не выше этого значения. Так и есть, но только в разряднике, где возникает искра порядка полутора сантиметров. Слабый высоковольтный пробой на участках медной шины в два и более сантиметров говорит о наличии потенциала более 14 КВ. Максимальный потенциал в схеме Н.Тесла у лампочки, которая ближе к разряднику.

    Конденсатор начинает заряжаться. На разряднике идет рост потенциала, возникает пробой. Искра обуславливает появление электродвижущей силы определенной мощности. Мощность это произведение тока на напряжение. 12 вольт 10 ампер (толстый провод) то же, что и 1200 вольт 0,1 ампер (тонкий провод). Разница состоит в том, что для передачи большего потенциала требуется меньшее число электронов. Для придачи значительному числу "медленных" электронов в медной шине ускорения (больший ток) требуется время. На данном участке цепи происходит перераспределение - возникает продольная волна увеличения потенциала при незначительным росте тока. На двух различных участках медной шины образуется разность потенциалов. Эта разность потенциалов и обуславливает свечение лампы накаливания.На медной шине наблюдается скин эффект (движение электронов по поверхности проводника) и значительный потенциал, больший чем заряд конденсатора.

    Электрический ток обусловлен наличием в кристаллических решётках металлов подвижных электронов, перемещающихся под действием электрического поля. В вольфраме, из которого сделана нить лампы накаливания, свободные электроны менее подвижны чем в сербре, меди или алюминии. Поэтому движение поверхностного слоя электрнов фольфрамовой нити вызывает свечение лампы накаливания. Вольфрамовая нить лампы накаливания разорвана, потенциальный барьер выхода из металла электроны преодолевают, возникает электронаая эмиссия. Электронны находятся в области разрыва вольфрамовой нити. Энергетическая субстанция голубого цвета следствие и одновременно причина поддержание тока в цепи.

    Говорить о полном соответствии полученного тока с радиантным током, описанным Н.Тесла преждевременно. Н.Тесла указывает, что подключенные к медной шине электролампы не нагревались. В прооведенном эксперементе электрические лампы нагреваются. Это говорит о движении электрнов вольфрмаовой нити. В эксперементе следует добиться полного отсутствия электрического тока в цепи: Продольная волна роста потенцила широкого частотного спектра искры без токовой составляющей.

    На фотографии показана возможность заряда высоковольтных конденсаторов. Заряд осуществляется с помощью электростатического электричесвтва трансформатора Тесла. Схема и принципы съема описаны в разделе съем энергии.

    Ролик демонстрирующий заряд конденсатора 4Мкф можно посмотреть по ссылке:

    Разрядник, четыре конденсатора КВИ-3 10КВ 2200ПФ и два конденсатора емкостью 50МКФ 1000В. включены последовательно. В разряднике идет постоянный искровой разряд сатистического электричества. Разярядник собран из клемм магнитного пускателя и имеет более высокое сопротивление, чем медная проволока. Величина искрового промежутка разрядника - 0,8-0,9мм. Величина промежутка между контактами разрядника на основе медной проволоки, подключенной к конденсаторам 0,1 и менее мм. Искровой разряд статического электричества между контактами медной проволоки отсутствует, хотя искровой промежуток меньше, чем в основном разряднике.

    Конденсаторы заряжаются до напряжений более 1000В, оценить величину напряжения нет технической возможности. Следует отметить, при неполном заряде конденсатора, например до 200В, тестер показывает колебания напряжения от 150В до 200В и более вольт.

    При накоплении заряда конденсаторы заряжаются до напряжений более 1000В, происходит пробой промежутка устанавливаемого медной проволокой подключенной к клемам конденсатора. Пробой сопровождается вспышкой и громким взрывом.

    При включении схемы, сразу на клемах конденсатора появляется и начинает рости высокое напряжение и далее идет заряд конденсатора. То что конденсатор заряжен можно определить по уменьшению и последующему прекращению электростатической искры в разряднике.

    Если убрать дополнительный разрядник из медной проволоки, подключенной к высоковольтным конденсаторам, вспышки происходят в основном разряднике.

    Конденсатор используемый в ролике, МБГЧ-1 4 мкф * 500В через 10 минут непрерывной работы - вздулся и вышел из строя, чему предшествовало бульканье масла.

    При работе схемы на всех участках присутствует электростатическое электричество, о чем свидетельствует свечение неоновой лампочки.

    Если заряжать конденсаторы высокой емкости без разрядника, при разряде конденсаторов выходят из строя выпрямительные диоды.

    Беспроводная передача энергии.

    Оба соленоида намотаны на трубе пвх с внешним диаметром 50 мм. Горизонтальный солионоид (передатчик) намотан проводом 0,18 мм, длина 200 мм. расчетная длина провода 174,53м. Вертикальный соленоид (приемник) намотан проводом 0,1 мм. длина 280 мм, расчетная длина провода 439,82м.

    Ток потребления схемы менее одного ампера. Электролампа 12 вольт 21 ватт. Яркость свечения лампы составляет около 30% в сравнении с непосредственным подключением к аккумулятору.

    На увеличение яркости свечения лампы, помимо перпендикулярного размещения соленоидов, влияет взаимное расположение проводников - конец соленоида передатчика (красная изолента) и начало солиноида приемника (черная изолента). При близком, парралельном их размещении яркость свечения лампы увеличивается.

    Заряд конденсаторов в ранее рассмотренной схеме возможен через катушку посредник без непосредственной связи блока съема (высоковольтный конденсатор и выпрямительные диоды) с трансформатором тесла. Эффективность беспроводной передачи энергии порядка 80-90% в сравнении с непосредственным подключением блока съема к соленоиду-передатчику. На фотографии показано наиболее эффективное расположение соленоидов друг относительно друга. Поскольку расположение соленоидов перпендикулярно, передача энергии посредством магнитного поля по классическим представлениям невозможна. Визуально оценить энергетику процесса возможно просмотрев фильм:

    Верхний конец соленоида-приемника соеденен с выпрямителями КЦ109А, нижний не соеденен ни с чем. При работающей схеме в нижней части соленоида-приемника наблюдается незначительная искра. Верхний конец соленоида-передатчика в воздухе, не соеденен ни с чем.
    Ток потребления 1А. В качестве катушки посредника проверялись соленоиды намотанные проводом 0,1мм, длина 200 и 160 мм. Конденсатор до напряжения необходимого для пробоя разрядника не заряжается. Соленоид-приемник представленный на фотографии дает наилучший результат. Ферритовые наполнители в передатчике и приемнике не использовались.

    С уважением, А. Мищук.

    Энергия из эфира своими рукамиEuroSamodelki.ru - это огромное количество самоделок, которые сопровождаются подробными иллюстрированными инструкциями для самостоятельного изготовления. В нашем каталоге насчитывается уже более 2100 самоделок. Присоединяйтесь к нам, вступайте в нашу социальную группу ВКонтакте. Мы Вас ждем! Сделайте что-нибудь полезное для себя, для своего дома, для своих близких.

    Делайте самоделки своими руками как мы, делайте лучше нас!

    Eurosamodelki.ru © 2012-2017
    Копирование допускается только при использовании активной ссылки на сайт

    Энергия из эфира своими руками

    *****

    Обсуждения

    Алексей. пожалуйста помогите с двумя вопросами:

    1) на схеме обозначено питание от 12 и 65 вольт, это питание от гальванических элементов или от каких-то преобразователей? Или возможно организовать питание только от 12в?
    2) подскажите по конструкции первичной обмотки передатчика, не совсем понятно сколько витков и каким проводом мотать?

    Заранее благодарен за ответ!
    P.S. (ответ можно и в ЛС)

    Энергия из эфира своими руками

    Алексей. Это питание с одного трансформатора 12 и 65 вольт
    с общим минусом

    Энергия из эфира своими руками

    А фото катушек можно пожалуйста?

    Энергия из эфира своими руками

    Алексей. Автор прозрачно намекал, что количество витков - 8, а сечение провода 2,5 мм.кв. Насчет диаметра каркаса, увы неизвестно.

    *****

    Тесла или 220 вольт из ничего

    Энергия из эфира своими руками

    Читая первоисточники можно вывести много истин и противоречий, все в мире относительно – так как и квадратный предмет не может быть идеально с ровными со сторонами и идеально острыми углами, так как молекулы круглые. но в том же случае в нана технологии — где вся основа уходит в четыре кольца в которых движется заряд чего то, и ядро которое состоит из стержня который вращается. Так что все в мире настолько относительно, и истина никому еще не известна. Вот по этому и прошу больше теории для работы.

    Энергия из эфира своими руками

    вот из вашей ссылки кусок описания трансформатора — … Индуктор J снабжает электричеством конденсатор C, причем через искровой промежуток F и проводник L проходят быстрые электрические колебания. Проводник L состоит нз небольшого числа оборотов толстой проволоки. Внутри этой первичной катушки L помещена вторичная катушка ab с большим числом оборотов, в которой поэтому возникают очень большие напряжения. … отсюда видно что трансформатор повышающий и его коэффициент трансформации ну ни как не равен 1. Выражение n = U1/U2=W1/W2 справедливо для любых трансформаторов, будь они с сердечником или без, на любых частотах преобразования. Но вот КПД всей этой системы очень мало!

    Энергия из эфира своими руками

    почитайте о Никола тесла! тогда все встанет на места, я не его ученик, я тоже читаю пытаюсь делать — в его словах трансформатор должен быть больше единицы тогда и кпд будет высокое. в схемах зарубежных разработок это тоже учитывается, там снимают пульс со схемы последовательным включение трансформатора тесла в цепь чем и добиваются недостающей энергии… тем самым методом можно увеличить к-во трансформаторов тесла в цепи. у каждого своя дорога как говориться — но при таком включении смотря осциллограф сам ведешь что должно работать — и вот импульс ходит — но не ловится. почему Тесла в те годы делал опыты которые лишь сейчас смогли повторить. Но некоторые остались загадкой. Теория тесла часто шла поперек науки и иногда против её.

    Энергия из эфира своими руками

    О Николе Тесла читал много, а именно:
    1.Патенты Никола Теслы.
    2.Никола Тесла — Статьи.
    3.Никола Тесла. Повелитель вселенной.
    4.Гений, бьющийся через край. Жизнь Николы Теслы
    5.Никола Тесла — Записи из Колорадо Спрингс
    6.Никола Тесла — Лекции.
    Собирал несколько раз и катушки Тесла, один вариант был классический SGTC, но маломощный, другой VTTC, тут конечно разряды удавалось большие делать… но нигде не встречал «трансформатор должен быть больше единицы» — что это. Объясните по-русски как Вы это понимаете!

    Энергия из эфира своими руками

    После такого списка вами прочитанного –просто не могу не ответить, вот хорошая ссылка про волнующую единицу newjetenergy.ru/. я изучаю теслу всего около 5 лет, перечитал много, но сути мало, не дошли до нас его записи, а лишь дошло то что поняло его окружение, поэтому много расходится сейчас в понятиях и в практики. Советую почитать про зеркал — которые еще были столетия назад, на вскидку не помню точного названия – но там тоже резонанс но уже с природой и землей, мирами …. В какой-то области это все рядом, я бы сказал это одно…

    Энергия из эфира своими руками

    После такого списка вами прочитанного –просто не могу не ответить, вот хорошая ссылка про волнующую единицу newjetenergy.ru/. я изучаю теслу всего около 5 лет, перечитал много, но сути мало, не дошли до нас его записи, а лишь дошло то что поняло его окружение, поэтому много расходится сейчас в понятиях и в практики. Советую почитать про зеркал — которые еще были столетия назад, на вскидку не помню точного названия – но там тоже резонанс но уже с природой и землей, мирами …. В какой-то области это все рядом, я бы сказал это одно…

    Энергия из эфира своими руками

    Думаю что ответ вы получили, от себя скажу одно в добавку всему. Если вы пытались сделать транс Тесла — вся энергия в эфире, то есть возбудив эфир (окружение) получим больше единицы.
    Это возможно вполне. вопрос как взять потом это? хотя по схеме тесла – передача энергии по одному проводу, где две катушки связаны проводом. так вот запитка первой катушки меньше чем потребление со второй.

    Энергия из эфира своими руками

    Да, знаю я про новомодные теории эфира, про энергию из ничего, НО, это только теория, никаких экспериментальных подтверждений НЕ БЫЛО. Сейчас труды Тесла коверкают кому как захочется, придают его разработкам такие сверх естественные значения, что просто жуть! Лучше пусть теорию и практику термоядерного синтеза развивают, тут мне кажется больше пресеиктив открывается. Тему думаю лучше закрыть, а то и так тут расписались не плохо. Удачи в освоении новых вершин науки!

    Энергия из эфира своими руками

    Вы приятный собеседник. Соглашусь с вами полностью, сейчас трудно найти первоисточник. Я по сей день занимаюсь теслой – будут ссылки интересные или идеи личные пишите, буду рад поразмышлять на пользу, а мож из практики чего подскажу

    Энергия из эфира своими руками

    да почитал я тут ваши посты это печально рабочая схема запитки лампы это качер Бровина он работает 100% но трансформатор тесла это ТРАНСФОРМАТОР всего лишь а не генератор халявы схема капанадзе не работает собирали не учтено куча параметров теории о эфире не новомодные как говорит мистер сайрон это квантовая механика нова теории сплошных сред хороший труд а волны это волны в нашей вселенной нет устройств с кпд 100% возможно создать установку которая преобразует энергию солнца или как говорил Тесла колеса природы человек создавший эту тему не читал Тесла это однозначно качер он и в африке качер рабочие схемы преобразование тока в волны и создание структуры этих волн с возможностью наложения нагрузки вот задача стоящая звания ученого башня вондерклиф это устройство для создания ударных волн в эфире (взрывов) Тесла хотел использовать этот взрыв для передачи энергии (атмосферной статики)на расстояние в более доступной форме но в совремменом мире такое устройсво уничтожит все сети и электронику и поубивает кучу людей прамо возле таких сетей он сам отказался ее достраивать по этим причинам а тунгусскую катастрофу еще доказать надо.Ход мыслей Тесла понятен переменный ток-радиоволны-модуляция-ударные волны-трансформатор(бытовой)-статика все очевидно он провел тысячи экспериментов и ничего не скрывал да может додумал лишнего а может сошел с ума потому что не нашел того что искал… это не повод делать себе идола надо работать а работа это накопление знаний хорошо проверю всех что такое масса(суть)?

    Энергия из эфира своими руками

    Трансформатор Тесла это резонансная схема рабающая на частоте не более 500 кГц. Если бы это была замкнутая резонансная схема ( с раскачкой ) то кпд возможно будет больше 1. Создать такую схему пока нереально требуются серьёзные конструктивные расчёты. Был такой случай у одного моего приятеля в 80 годах прошлого века, разрабатываля генератор нулевых биений для какой то интересной идеи ( к сожелению уже не помню ) задача состояла в том чтобы на низкой частоте на низкочастотном феррите (кольце) создать двумя генераторами небольшой мощности создать резонанс в противофазе по петле гистерезиса. Эксперимент не удался кольцо с начала приобрело лиловое свечение после развалилось на отдельные фрагменты, до сих пор даже наука с которой приходится общаться сей феномен объяснить не могут толком, много предположений. О стоячей волне приведу пример (Ладожское озеро )при северном и восточном ветре на южном берегу образуются волны небольшие около 2 метров имеющие вертикальную структуру и ломающие лодки и баркасы выплыть из таких волн очень трудно (проверено). Тема к размышлению. Что касается Вольт, Ампер, Герц всё это физические величины, без них невозможна квантовая физика а это другой мир со своими законами и энергиями.

    Энергия из эфира своими руками

    трансформатор тесла это и есть замкнутый контур где вторичка возбуждаясь на своей резонансной частоте дает сигнал к следующему витку пробоя на разряднике тот замыкает первичку давая сигнал вторичке и та опять возбуждаеться на своей частоте и тд. а эффект который вы описали с другом примитивен вы пуская в противоход переменный ток попали в резонанс кольцевых остаточных токов в феррите который вызвал разрушение магнита которым и являлось ваше устройство в тот момент наматайте на магнит только первичку и воткните в розетку будет тоже никакой мистики.

    Энергия из эфира своими руками

    а квантовая физика уже сама обьявила что не может обьяснить в принципе ничего что происходить на недостижимой планковсой частоте в 10х38 герц и отказалась дать обьяснение даже течению тока в проводниках (отчен академии наук 2012 год)

    Энергия из эфира своими руками

    и еще резистор в виде кольца мебиуса без паразитной эдс тесла запантетовал сто лет назад а никто еще и не допер его использовать))))))))))))

    Энергия из эфира своими руками

    Кто может подкинуть какие-нибудь идеи по измерению высокого напряжения на 50 Гц?
    Нужно измерять в пределах нескольких киловольт обычным мультиметром с пределом измерения до 1000 вольт. Идеи, через понижающий транс, сразу отсекаются.

    Энергия из эфира для дома самому сделать

    Статическое электричество из воздуха

    Много лет ученые ищут идеальный альтернативный источник электроэнергии, который позволил бы добывать ток из возобновляемых ресурсов. О том, как получить статическое электричество из воздуха, задумывался еще Тесла в 19 веке, и сейчас ученые пришли к выводу, что да, это вполне реально.

    Виды добычи

    Альтернативное электричество может добываться из воздуха двумя способами:

    1. Ветрогенераторами;
    2. За счет полей, пронизывающих атмосферу.

    Как известно, электрический потенциал имеет свойство накапливаться в течение определенного времени. Сейчас атмосфера изнизана различными волнами, производящимися электрическими установками, приборами, естественным полем Земли. Это позволяет говорить о том, что электричество из атмосферного воздуха можно добыть своими руками, даже не имея никаких специальных приспособлений и схем, но про особенности токопроизводства по этому варианты мы расскажем ниже.

    Энергия из эфира для дома самому сделать

    Фото — грозовая батарея

    Ветрогенераторы – это давно известные источники альтернативной энергии. Они работаю за счет преобразования силы ветра в ток. Ветряной генератор – это устройство, способное работать продолжительное время и накапливать энергию ветра. Данный вариант широко используется в различных странах: Нидерландах, России, США. Но, одной ветряной установкой можно обеспечить ограниченное количество электрических приборов, поэтому для питания городов или заводов устанавливаются целые поля ветроустановок. В использовании этого способа есть как достоинства, так и недостатки. В частности, ветер – это непостоянная величина, поэтому нельзя предугадать уровень напряжения и накопления электричества. При этом, это возобновляемый источник, работа которого совершенно не вредит окружающей среде.

    Энергия из эфира для дома самому сделать

    Фото — ветряки

    Видео: создание электричества из воздуха

    Как добыть энергию из воздуха

    Простейшая принципиальная схема не включает в себя никаких дополнительных накопительных устройств и преобразователей. По сути, требуется только металлическая антенна и земля. Между этими проводниками устанавливается электрический потенциал. Он со временем накапливается, поэтому это непостоянная величина и рассчитать его силу практически невозможно. Такое, вырабатывающее ток, устройство работает по принципу молнии – через определенный промежуток времени происходит разряд тока (когда потенциал достиг своего максимума). Таким образом, можно извлечь из земли и воздуха достаточно большое количество полезной электроэнергии, которой будет достаточно для работы электрической установки. Её конструкция подробно описывается в труде: «Секреты свободной энергии холодного электричества».

    Энергия из эфира для дома самому сделать

    Фото — схема

    Схема имеет свои достоинства :

    1. Простота в реализации. Опыт можно с легкостью повторить в домашних условиях;
    2. Доступность. Не нужно никаких приспособлений, самая обычная пластина из токопроводящего металла подойдет для реализации проекта.
    1. Реализация схемы очень опасна. Нельзя рассчитать даже примерное количество ампер, не говоря уже про силу токового импульса;
    2. При работе образовывается своеобразный открытый контур заземления, к которому притягиваются молнии. Это является одной из самых главных причин, почему проект не «пошел в массы» — он опасен для жизни и производства. Удар молнии подчас достигает 2000 Вольт.

    С этой точки зрения, свободное электричество, добытое при помощи ветрогенераторов более безопасно. Но тем ни менее, сейчас можно даже купить такой прибор (к примеру, ионизатор-люстра Чижевского).

    Энергия из эфира для дома самому сделать

    Фото — люстра Чижевского

    Но есть еще один вариант рабочей схемы – это генератор TPU электричества из воздуха от Стивена Марка. Это устройство позволяет получить определенное количество электроэнергии для питания различных потребителей, причем, делает он это без какой-либо подпитки из вне. Технология запатентована и многие ученые уже повторили опыт Стивена Марка, но из-за некоторых особенностей схемы она еще не пущена в обиход.

    Принцип работы прост: в кольце генератора создается резонанс токов и магнитные вихри, они способствуют появлению в металлических отводах токовых ударов. Рассмотрим наглядно, как сделать тороидальный генератор, чтобы добыть электричество из воздуха:

    1. Вам понадобится основание (это может быть кусок фанеры в форме кольца, отрезок резины, полиуретана и т. д.), две коллекторные катушки (внутренняя и внешняя) и катушки управления. Индивидуальный чертеж может иметь другие размеры, но в основании берется кольцо с наружным диаметром 230 мм, внутренним 180 мм, шириной 25 мм и толщиной 5 мм. Вырежьте из основания кольцо этого размера;

    Энергия из эфира для дома самому сделать

    Фото — основание

  • Теперь нужно намотать внутреннюю коллекторную катушку. Намотка трехвитковая, производится многожильным проводом из меди. Специалистами заявляется, что и одного витка намотки будет достаточно для запитки лампочки и проведения эксперимента;
  • Управляющих катушек – четыре штуки, каждая из них должна находиться под прямым углом, в противном случае, будут создаваться помехи магнитному полю. Намотка плоская, зазор между отдельными витками (катушками) примерно 15 мм, но это зависит от особенностей выбранного материала;

    Энергия из эфира для дома самому сделать

    Фото — четыре катушки

  • Для намотки управляющих катушек могут использоваться медные одножильные провода, на описываемый размер рекомендуется делать 21 виток;
  • Для установки последней катушки используется медный провод с изоляцией. Он наматывается по всей площади основания.

    Энергия из эфира для дома самому сделать

    Фото — конечная обмотка

    На этом конструирование можно считать завершенным. Теперь нужно соединить выводы. Предварительно нужно между выводами обратной земли и земли установить конденсатор на 10 микрофарад. Для запитки схемы используются скоростные транзисторы и мультивибраторы. Они подбираются опытным путем, т. к. их характеристики зависят от размера основания, видов провода и некоторых других особенностей конструкции. Для управления схемой можно использовать стандартная кнопка питания (ВКЛ – ВЫКЛ). Для более подробной информации рекомендуем просмотреть видео по генератору Стивена Марка в Xvid или TVrip-качестве.

    Не менее нашумевшим открытием стал генератор Капанадзе. Этот бестопливный источник энергии был презентован в Грузии, сейчас он тестируется. Генератор позволяет добывать электричество из воздуха без использования сторонних ресурсов.

    Энергия из эфира для дома самому сделать

    Фото — предположительная схема генератора Капанадзе

    В основе его работы лежит катушка Теслы, которая расположена в специальном корпусе, накапливающем электроэнергию. В свободном доступе есть видео с конференции и опыты, но нет никаких документов, реально подтверждающих существование этого изобретения. Схема не разглашается.

    *****

    Генератор свободной энергии с самозапиткой своими руками. Схема генератора свободной энергии

    Тем, кто не верит в существование свободной энергии, рекомендую провести следующий убедительный эксперимент. Возьмите повышающий трансформатор на 220 вольт с коэффициентом трансформации 3.14 (надеюсь, догадались, почему именно с таким коэффициентом). Первичную обмотку подключите к розетке, а повышающую обмотку, непременно в противофазе, подключите к соседней розетке.

    Более высокое вторичное напряжение пересилит напряжение в сети и увеличенная энергия вновь вернется на первичную обмотку. Процесс генерации свободной энергии, как вы уже наверняка догадались, будет лавинообразно нарастать, что приведет к взрыву трансформатора. Удачи.

    Энергия из эфира для дома самому сделать

    Энергия из эфира для дома самому сделать

    я согласен что это правда

    Энергия из эфира для дома самому сделать

    Аллу Пугачёву прооперировали в столице России

    Энергия из эфира для дома самому сделать

    10 вещей, которые родители никогда не должны говорить своим сыновьям

    Энергия из эфира для дома самому сделать

    Фильм "Аватар": киноляпы, которые никто не заметил

    Энергия из эфира для дома самому сделать

    16 интимных вещей, которые каждой паре следует сделать хотя бы однажды

    Энергия из эфира для дома самому сделать

    Наташа Королева очень жалеет, что разрушила брак Николаева

    Энергия из эфира для дома самому сделать

    25 знаменитых женщин, у которых нет детей

    Энергия из эфира для дома самому сделать

    Каких женщин мужчины считают самыми сексуальными?

    Энергия из эфира для дома самому сделать

    26 продуктов, которые помогут бороться с жиром на животе

    Энергия из эфира для дома самому сделать

    Такие стрижки будут мегапопулярными в 2017-м

    *****

    Генератор свободной энергии своими руками: схема

    December 17, 2015

    Основная масса людей убеждена, что энергию для существования можно получать только из газа, угля или нефти. Атом достаточно опасен, строительство гидроэлектростанций – очень трудоемкий и затратный процесс. Ученые всего мира утверждают, что запасы природного топлива могут скоро закончиться. Что же делать, где же выход? Неужели дни человечества сочтены?

    Энергия из эфира для дома самому сделать

    Все из ничего

    Исследования видов «зеленой энергии» в последнее время ведутся все интенсивней, так как это является путем в будущее. На нашей планете изначально есть все для жизни человечества. Нужно только уметь это взять и использовать на благо. Многие ученые и просто любители создают такие устройства? как генератор свободной энергии. Своими руками, следуя законам физики и собственной логике, они делают то, что принесет пользу всему человечеству.

    Так о каких явлениях идет речь? Вот несколько из них:

    • статическое или радиантное природное электричество;
    • использование постоянных и неодимовых магнитов;
    • получение тепла от механических нагревателей;
    • преобразование энергии земли и космического излучения;
    • имплозионные вихревые двигатели;
    • тепловые солнечные насосы.

    В каждой из этих технологий для высвобождения большего объема энергии используется минимальный начальный импульс.

    Как сделать генератор свободной энергии своими руками? Для этого нужно иметь сильное желание изменить свою жизнь, много терпения, старание, немного знаний и, конечно, необходимые инструменты и комплектующие.

    Энергия из эфира для дома самому сделать

    Вода вместо бензина? Что за глупости!

    Двигатель, работающий на спирте, наверное, найдет больше понимания, чем идея разложения воды на молекулы кислорода и водорода. Ведь еще в школьных учебниках сказано, что это совершенно нерентабельный способ получения энергии. Однако уже существуют установки для выделения водорода способом сверхэффективного электролиза. Причем стоимость полученного газа равна стоимости кубометров воды, использованных при этом процессе. Не менее важно, что затраты электричества тоже минимальны.

    Скорее всего, в ближайшем будущем наряду с электромобилями по дорогам мира будут разъезжать машины, двигатели которых будут работать на водородном топливе. Установка сверхэффективного электролиза – это не совсем генератор свободной энергии. Своими руками ее достаточно трудно собрать. Однако способ непрерывного получения водорода по данной технологии можно совместить с методами получения зеленой энергии, что повысит общую эффективность процесса.

    Энергия из эфира для дома самому сделать

    Один из незаслуженно забытых

    Таким устройствам, как бестопливные двигатели, совершенно не требуется обслуживание. Они абсолютно бесшумны и не загрязняют атмосферу. Одна из самых известных разработок в области экотехнологий – принцип получения тока из эфира по теории Н. Теслы. Устройство, состоящее из двух резонансно настроенных трансформаторных катушек, является заземленным колебательным контуром. Изначально генератор свободной энергии своими руками Тесла сделал в целях передачи радиосигнала на дальние расстояния.

    Если рассматривать поверхностные слои Земли как огромный конденсатор, то можно представить их в виде одной токопроводящей пластины. В качестве второго элемента в этой системе используется ионосфера (атмосфера) планеты, насыщенная космическими лучами (так называемый эфир). Через обе эти «пластины» постоянно текут разнополюсные электрические заряды. Чтобы «собрать» токи из ближнего космоса, необходимо изготовить генератор свободной энергии своими руками. 2013 год стал одним из продуктивных в этом направлении. Всем хочется пользоваться бесплатным электричеством.

    Энергия из эфира для дома самому сделать

    Как сделать генератор свободной энергии своими руками

    Схема однофазного резонансного устройства Н. Тесла состоит из следующих блоков:

    1. Две обычные аккумуляторные батареи по 12 В.
    2. Выпрямитель тока с электролитическими конденсаторами.
    3. Генератор, задающий стандартную частоту тока (50 Гц).
    4. Блок усилителя тока, направленный на выходной трансформатор.
    5. Преобразователь низковольтного (12 В) напряжения в высоковольтное (до 3000 В).
    6. Обычный трансформатор с соотношением обмоток 1:100.
    7. Повышающий напряжение трансформатор с высоковольтной обмоткой и ленточным сердечником, мощностью до 30 Вт.
    8. Основной трансформатор без сердечника, с двойной обмоткой.
    9. Понижающий трансформатор.
    10. Ферритовый стержень для заземления системы.

    Все блоки установки соединяются согласно законам физики. Система настраивается опытным путем.

    Энергия из эфира для дома самому сделать

    Неужели все это правда?

    Может показаться, что это абсурд, ведь еще один год, когда пытались создать генератор свободной энергии своими руками - 2014. Схема, которая описана выше, просто использует заряд аккумулятора, по мнению многих экспериментаторов. На это можно возразить следующее. Энергия поступает в замкнутый контур системы от электрополя выходных катушек, которые получают ее от высоковольтного трансформатора благодаря взаимному расположению. А зарядом аккумулятора создается и поддерживается напряженность электрического поля. Вся остальная энергия поступает из окружающей среды.

    Бестопливное устройство для получения бесплатного электричества

    Известно, что возникновению магнитного поля в любом двигателе способствуют обычные катушки индуктивности, изготовленные из медного или алюминиевого провода. Чтобы компенсировать неизбежные потери вследствие сопротивления этих материалов, двигатель должен работать непрерывно, используя часть вырабатываемой энергии на поддержание собственного поля. Это значительно снижает КПД устройства.

    В трансформаторе, работающем от неодимовых магнитов, нет катушек самоиндукции, соответственно и потери, связанные с сопротивлением, отсутствуют. При использовании постоянного магнитного поля токи вырабатываются ротором, вращающимся в этом поле.

    Энергия из эфира для дома самому сделать

    Как сделать небольшой генератор свободной энергии своими руками

    Схема используется такая:

    • взять кулер (вентилятор) от компьютера;
    • удалить с него 4 трансформаторные катушки;
    • заменить небольшими неодимовыми магнитами;
    • ориентировать их в исходных направлениях катушек;
    • меняя положение магнитов, можно управлять скоростью вращения моторчика, который работает абсолютно без электричества.

    Такой почти вечный двигатель сохраняет свою работоспособность до извлечения из цепи одного из магнитов. Присоединив к устройству лампочку, можно бесплатно освещать помещение. Если взять более мощный движок и магниты, от системы можно запитать не только лампочку, но и другие домашние электроприборы.

    О принципе работы установки Тариэля Капанадзе

    Этот знаменитый генератор свободной энергии своими руками (25кВт, 100 кВт) собран по принципу, описанному Николо Тесла еще в прошлом столетии. Данная резонансная система способна выдавать напряжение, в разы превосходящее начальный импульс. Важно понимать, что это не «вечный двигатель», а машина для получения электричества из природных источников, находящихся в свободном доступе.

    Для получения тока в 50 Гц используются 2 генератора с прямоугольным импульсом и силовые диоды. Для заземления используется ферритовый стержень, который, собственно, и замыкает поверхность Земли на заряд атмосферы (эфира, по Н. Тесла). Коаксиальный кабель применяется для подачи мощного выходного напряжения на нагрузку.

    Говоря простыми словами, генератор свободной энергии своими руками (2014, схема Т. Капанадзе), получает только начальный импульс от 12 В источника. Устройство способно постоянно питать током нормального напряжения стандартные электроприборы, обогреватели, освещение и так далее.

    Собранный генератор свободной энергии своими руками с самозапиткой устроен так, чтобы замкнуть цепь. Некоторые умельцы пользуются таким способом для подзарядки аккумулятора, дающего начальный импульс системе. В целях собственной безопасности важно учитывать тот факт, что выходное напряжение системы имеет высокие показатели. Если забыть об осторожности, можно получить сильнейший удар током. Так как генератор свободной энергии своими руками 25кВт может принести как пользу, так и опасность.

    Энергия из эфира для дома самому сделать

    Кому все это нужно?

    Сделать генератор свободной энергии своими руками может практически любой человек, знакомый с основами законов физики из школьной программы. Электропитание своего собственного жилища можно полностью перевести на экологическую и доступную энергию эфира. С использованием таких технологий снизятся транспортные и производственные расходы. Атмосфера нашей планеты станет чище, остановится процесс «парникового эффекта».

    С бестопливным не так уж все и сложно просто надо знать теорию. У Капанадзе это выполнен так. Зеленая коробка это маленькая тесла выполненная на феррите что бы максимально снизить частоту резонанса до 5 - 6 Кгц. далее идет через разрядник на колебательный контур настроенный в резонанс с этой Теслой, по скольку емкостной связи нет то этот контур дает существенную прибавку по току. то есть принцип приемника Попова, далее Капанадзе делает что? Через разрядник (что бы ограничить и стабилизировать напряжение подает на те 4 витка толстого провода (опять таки индуктивно не связанную с контуром а эти 4 витка заземляет. Колебательный контур расценивает это как независимый источник энергии. получается сильный токовый резонанс с одновременным поддержанием и стабилизацией работы резонансного контура. Ну а как снимать это вопрос уже второй. Сложность это разрядники они горят по этому говорить о долговечности не приходится! То что нарисовано выше это просто бред.

    Энергия из эфира для дома самому сделать

    Судя по публикациям последних лет,эта тема постепенно заводится в тупик.Какие-то противоречивые рассуждения,демонстрация роликов,от которых только два чувства возникают,смех или огорчение.Темой свободной энергии заинтересовался четыре года назад.За это время было собрано много различных схем и конструкций и лишь одна собранная работала два года,но она была маломощная,в нагрузке два светодиода.Попытки увеличить мощность ,используя эту-же схему не привели к успеху.

    Юрий 11 апреля 2017, 22:36

    Волков бояться - в лес не ходить.

    Энергия из эфира для дома самому сделать

    Пока сидим на монополии эл. эн нефти газа это не увидит свет а если узнают что дома стоит а государственным не пользуешься накажут

    Юрий виталий концевой 16 апреля 2017, 20:21

    Кто вас накажет за использование открытого воздуха для своего жизнеобеспечения?
    Те, кто якобы могут наказать, прикрываются туманными законами выдуманными вразрез с Конституцией. А сами за частую, туповатые и трусливые личности.
    Так что, если ваш прибор не мешает окружающим, не засоряет среду, - пользуйтесь им и помогайте другим делать подобные устройства.

    Вадим 7 сентября 2016, 7:18

    Берем все дружно и мотаем! Придумываем чтото новое! Пускай безумное! А потом глядиш один из скептиков становится изобретателем! Просто вам в голову вбили что придумывать и изобретать должны професора из университетов которые нихрена не понимают! Просто купил статус и все! Приведу пример:два пацана придумали необычные поршневые кольца изготовили их пришли показать, и вот один професор им сказал :(вы кто такие? Я професор а вы кто? Или вы говорите что ето есть розработка моя и вы были асистентами или никак!) тут мысль байки такова! нахер всех професоров, магнатов, и т д! Изобретаем делимся достижениями и получаем респект и уважуху от одноземлян их внуков и правнуков и т д!

    Энергия из эфира для дома самому сделать

    Уже более десяти лет хожу по инстанциях и как на камне ,имею до 10 патентов во многих странах мира более того и пилотные установки к ним, по альтернативным видам энергии.но увы,ну не профессор я. этим всё сказано, как же ,их обошли.

    Вы наверное правы,пока существует пути наживы так и будет, не дадут потому,что сидят на традиционных источниках энергии, альтернативная энергия, это крест на традиционные источниками энергии,которые кстати подходят к концу иссякают в априори. Но все же хочется надеяться что не всегда так будет. Вот уже несколько лет занимаюсь этой проблемой,надо сказать не безуспешно имею ряд патентов во нескольких странах мира. но вот с реализацией проектов пока на месте.

    Энергия из эфира для дома самому сделать

    Юрий Алексей Калинин 11 апреля 2017, 22:41

    Абсолютно верно!
    Делать всё самим и делиться с остальными, обязательно делиться.

    Энергия из эфира для дома самому сделать

    10 очаровательных звездных детей, которые сегодня выглядят совсем иначе Время летит, и однажды маленькие знаменитости становятся взрослыми личностями, которых уже не узнать. Миловидные мальчишки и девчонки превращаются в с.

    Энергия из эфира для дома самому сделать

    Топ-10 разорившихся звезд Оказывается, иногда даже самая громкая слава заканчивается провалом, как в случае с этими знаменитостями.

    Энергия из эфира для дома самому сделать

    10 загадочных фотографий, которые шокируют Задолго до появления Интернета и мастеров "Фотошопа" подавляющее большинство сделанных фото были подлинными. Иногда на снимки попадали поистине неверо.

    Энергия из эфира для дома самому сделать

    9 знаменитых женщин, которые влюблялись в женщин Проявление интереса не к противоположному полу не является чем-то необычным. Вы вряд ли сможете удивить или потрясти кого-то, если признаетесь в том.

    Энергия из эфира для дома самому сделать

    Эти 10 мелочей мужчина всегда замечает в женщине Думаете, ваш мужчина ничего не смыслит в женской психологии? Это не так. От взгляда любящего вас партнера не укроется ни единая мелочь. И вот 10 вещей.

    Энергия из эфира для дома самому сделать

    7 частей тела, которые не следует трогать руками Думайте о своем теле, как о храме: вы можете его использовать, но есть некоторые священные места, которые нельзя трогать руками. Исследования показыва.

    *****

    Свободная Энергия электричество из эфира

    Энергия из эфира для дома самому сделать

    Энергия из эфира для дома самому сделать

    Предлагаю пробовать повторить. Оговорюсь, устройство не мое. Этот ролик в интернете пропал. Хорошо в свое время скачал его и пересохранил. Дополнительную информацию можно найти в сети по запросу "Свободная энергия эфира" На видео подробно показан состав устройства. Катушка на пластиковой трубе(канализационная) - диаметр, длина, количество витков и их шаг отчетливо видны, разрядник искровой - главный элемент, конденсатор от микроволновки, трансформатор от микроволновки на 2000 Вольт, диод от микроволновки, автотрансформатор для запитки устройства от сети. Так вот утверждается, что от сети поступает не столько энергии, сколько отдается на выходе 🙂 На до бы это провеить 🙂 Если у кого, чего получится - отпишите Пожалуйста. Думаю всем будет интересно.

    Video of kapanadze generator replica kapagen Свободная электро энергия

    *****

    Практическое руководство по устройствам свободной энергии

    Опубликовано 27.02.2011 автором lazar Июнь 21, 2012

    Неподвижный электрический генератор состоит по крайней мере из одного постоянного магнита, в сочетании с ферромагнитным сердечником снабженным по меньшей мере одним отверстием в середине; отверстия и магниты, размещены таким образом, чтобы в отверстии происходил перехват потока от постоянных магнитов проходящего через ферромагнитный сердечник. Первая катушка намотана вокруг ферромагнитного сердечника с целью создания смещения потока от постоянного магнита внутри ферромагнитного сердечника. Второй провод проходит через отверстия проникающие через ферромагнитный сердечник, с целью перехвата магнитного потока, и извлекает полезную ЭДС. Изменения напряжения на первой катушке смещают магнитный поток постоянного магнита в пространство между отверстиями в основном сердечнике, тем самым вызывая электродвижущую силу вдоль провода (5), проходящего через отверстия в ферромагнитном сердечнике. Симулируя механическое действие электрического генератора, поэтому движущиеся части здесь не используются.

    Данное изобретение показывает способ и устройство для генерации электрической энергии с использованием неподвижных компонентов. Уже давно известно, что изменение магнитного поля через провод будет генерировать электродвижущую силу (ЭДС). При этом провода соединены в замкнутую электрическую цепь, в которой течет электрический ток, способный выполнять работу.

    Также давно известно, что при подключении нагрузки к контуру создается противодействующая сила, которая тормозит ротор. Для преодоления этой силы требуется приложить дополнительную механическую энергию, которая пропорциональна получаемой электрической энергии. Поэтому правильнее будет создавать изменение магнитного потока через контур с помощью электронного управления этим потоком, а не механическим движением.

    Сущность изобретения Уже давно известно, что источником магнетизма в постоянных магнитах являются вращающиеся электрические токи в ферромагнитных материалах, сохраняющийся на неопределенный срок в соответствии с четко определенными правилами квантования. В результате чего каждый атом испускает магнитные поля, как миниатюрный электромагнит.

    Этот атомный ток существует не только в магнитах. Он также существует в обычном металлическом железе, в каком-либо элементе из металлического сплава, то есть, в любом ферромагнетике. В отдельных ферромагнитных материалах, ориентация оси каждого атомного электромагнита является гибкой. Ориентация магнитного потока изменяется в соответствии с внешним воздействующим магнитным потоком. Такие материалы называются магнитомягкими.

    Постоянные магниты имеют жесткую магнитную ориентацию оси каждого атома. Отсюда и название «постоянный».

    Настоящее изобретение симулирует движение магнита и магнитных полей, без необходимости использования механических воздействий или движущихся частей, для производства электричества. Настоящее изобретение описывает электрический генератор, где магнитное торможение известное как выражение закона Ленца, не выработке электроэнергии.

    Краткое описание рисунков

    Возможные варианты реализации данного генератора.

    Рис.1 конструкция генератора

    Рис.2 изображение генератора в разрезе. Вдоль ферромагнитного сердечника.

    Рис.3 схема магнитного действия, происходящего в генераторе рис.1 и рис.2.

    Рис.4 схема, иллюстрирующая один из методов эксплуатации данных электрических генераторов.

    Подробное описание изобретения

    Рис.1 изображено в частично разобранном виде, конструкция электрического генератора. Обозначения так же применимы к Рис.2 и Рис.3.

    Под цифрой 1 обозначен постоянный магнит Северный полюс которого направлен к основному сердечнику. Точно так же цифрой 2 обозначен постоянный магнит (желательно того же размера, формы и состава) направленный Южным полюсом к противоположной стороне сердечника устройства. Буквы «S» и «N» обозначают эти магнитные полюса в чертежах.
    Магниты могут быть сделаны из любого магнитного материала. В порядке убывания эффективности, это магниты из неодима, железа и бора ( «перо»), самарий кобальт, Alnico сплава, или «керамики» Стронций-бария или свинцово-феррита. В некоторых случаях эти магниты могут быть заменены одним или более электромагнитами для создания необходимого магнитного потока. В другой конструкции изобретения наложенный постоянный ток под углом может быть применен к выходной обмотке для генерации требуемого потока, заменяя или усиливая постоянные магниты. Цифрой 3 обозначен ферромагнитный сердечник. Он является одним из важнейших компонентов генератора. Определяет основной потенциал выходной мощности, оптимальный тип магнита, электрическое сопротивление и рабочий диапазон частот. Он может быть любой формы, из любого ферромагнитного материала, образованного любым процессом (спекание, литье, СКЛЕИВАНИЯ, и намотки ленты и т.д.). Могут быть использованы ферриты, порошки металлов и ферромагнитных сплавов, с прослойками кобальта и / или железо и кремний-железо «электротехнической стали». В данном случае показан тороид, однако возможны любые другие формы основного сердечника. В этом случае оси отверстий в сердечнике направлены к центру сердечника. В случае прямоугольного сердечника они будут направлены параллельно сторонам. Под цифрой 4 обозначена выходная обмотка. Она может быть выполнена из медного провода подходящего сечения, в зависимости от мощности нагрузки.

    под цифрой 6 обозначена входная обмотка на которую подается переменный ток, прямоугольной формы. Используемый для сдвига полей постоянных магнитов. Для ясности, показано лишь несколько витков катушки 6. На практике, этот провод может охватывать весь основной сердечник или некоторые его части.

    На Рис.2 показан вид сверху на генератор. Положение магнитов (белые заштрихованные области для магнитов над сердечником и зеленые заштрихованные области для магнитов под сердечником).

    Генератор изображенный на рисунке, использует сердечник с 8 радиально просверленными отверстиями. Расстояния между этими отверстиями равны. Каждое отверстие смещено на 45 градусов от предыдущего отверстия. Центры всех отверстий лежат на одной плоскости посередине сердечника. Сердечник любой формы и размера может иметь лишь два или несколько сотен отверстий и такое же количество магнитов. В любом случае, основные магнитные взаимодействия показанные на Рис.3 происходят для каждого отверстия, как описано ниже.

    Рис.3 показан вид сбоку. Магниты представлены схематично, торчащими из верхней и нижней части активной зоны, стрелки, указывают направление магнитного потока.

    На практике, свободные концы магнитов генератора можно оставить «как есть», или они могут быть закрыты металлическим корпусом для обеспечения общего ферромагнитного пути. Или это может быть другой ферромагнитный сердечник аналогичного электрического генератора. Так можно сделать составной генератор имеющий общие магниты. Любые такие дополнения не имеют прямого отношения к функциональным принципам самого генератора, и поэтому они были исключены из этих иллюстраций.

    Две диаграммы потока показаны на Рис.3. частично показана входная катушка 6. импульсы положительной или отрицательной полярности определяют создаваемый входным током магнитный поток, обозначенный буквой а.

    Эти изогнутые стрелки (б) в пространстве между магнитами и отверстиями, показывают отклонение магнитного потока, как если бы они были ручьем или струей воздуха с учетом меняющегося ветра.

    В результате симулируется движение полей постоянных магнитов, вперед и назад над отверстиями с проводником 4, который проходит через эти отверстия. Подобно тому, как в механическом генераторе, движется магнитный поток ротора через проводник, и напряжение индуцируется в проводнике. Если электрическая нагрузка подключена к концам 5 этого провода 4. то через нее потечет полезный ток. Входной переменный ток через катушку 6, генерирует переменное магнитное поле в результате чего поля постоянных магнитов 1 и 2 отклоняются, как если бы неподвижные магниты (1,2) сами могли бы физически двигаться. Однако никакого механического движения нет.

    В настоящем генераторе электрический ток, протекающий через нагрузку и возвращающийся через выходной провод 4, создает магнитный поток в виде замкнутых контуров в ферромагнитном сердечнике. Магнитное поле окружает каждое отверстие в сердечнике, через которое проводит выходной провод 4. Это подобно нитям винта окружающим тело винта.

    На рис.4 показана типичная схема использования генератора. Прямоугольный переменный ток подается на входные зажимы (S), на первичную обмотку (а) понижающего трансформатора 11. Вторичная обмотка (b) включенная последовательно с конденсатором 12 и входной катушкой (с) генератора 13 образуют резонансный контур.

    Генераторы 13 выходной обмотке (d), связан с резистивной нагрузкой L через выключатель 14.

    Ввод схемы в резонанс, происходит при определенной частоте на которой реактивное сопротивление индуктивности (b+c) равно реактивному сопротивлению емкости 12, и мощность, потребляемая от входного источника энергии будет на минимальном уровне.

    Использование резонансного контура, в частности, с включением конденсатора 12, как это предлагается, способствует рециркуляции энергии внутри входной цепи, и способствует эффективному возбуждению и сокращению необходимой входной мощности.

    Другие устройства подобного рода происходят от Чарльза Флинна. Техника управления магнитным потоком постоянного магнита подробно описана в патентах Чарльз Флинна, которые включены в Приложение. В своих патентах он показывает методы получения линейного движения, возвратно-поступательного движения, кругового движения и преобразования энергии, и он дает полные описания и объяснения по каждому способу управления, его основной патент содержит сотни иллюстраций. Рассмотрим одно из его приложений: он утверждает, что существенного повышения магнитного потока можно добиться при использовании постоянного магнита следующим образом:

    Здесь, постоянный магнит вставлен в рамку из магнитомягкого железа (наборного) железа и шесть катушек намотаны в позициях как показано на рисунке. Магнитный поток от постоянного магнита проходит по обеим сторонам рамки. Если подать ток на 2 управляющие катушки слева, то магнитный поток целиком пойдет через левую выходную катушку, аналогично с правой стороной.

    Полная информация о патенте Чарльза Флинна находится в приложении, начиная со страницы 336.

    Stephan W. Leben.

    Существует интересное видео размещенное на YouTube, выложенное под ником «TheGuru2You». Оно начинается со схемы Александра Мейснера представленной в 1913 году и показана здесь:

    Штефан утверждает, что он построил эту схему и может подтвердить, что она является самостоятельным автогенератором. После кратковременного подключения к питанию она продолжает работать без питания. Частота колебаний определяется конденсатором, «С» и индуктивностью катушки, к которой он подключен.

    (прим. Переводчика. В самоподдерживающемся режиме схему запустить не удалось, однако потребляет она от источника ничтожно мало, поэтому такой режим вполне возможен при правильной настройке и подборе элементов схемы).

    Интересно, что если конденсатор заменить на электролизер (который фактически является конденсатором с водой вместо диэлектрика между пластинами), то частота схемы автоматически настраивается на резонансную частоту электролизера и предполагается, что эта система должна быть в состоянии выполнять электролиз воды, при низкой потребляемой мощности и автоматически подстраиваться на различные резонансные частоты электролизера. Насколько мне известно, это не было подтверждено.

    (прим.переводчика. насколько мы знаем вода плохой диэлектрик, особенно для переменного тока, поэтому данная идея выглядит весьма сомнительно)

    Стефан идет значительно дальше, объединив схему Александра Мейснера с магнитной цепью Чарльза Флинна.

    Транзистор работает в автогенераторном режиме как и прежде, трансформатор состоит из красных и синих обмоток. Эти колебания также отклоняют магнитные потоки от постоянных магнитов. По очереди в правую и левую сторону общего сердечника из наборного железа или феррита. Выходная ЭДС переменного тока снимается через черные катушки на каждой стороне сердечника. Переменный ток, выпрямляется четырьмя диодами и сглаживается конденсатором.

    Эта схема может быть запущена, кратковременным импульсом от 12 вольтового источника. Стефан предлагает использовать пьезоэлектрический кристалл подключенный к дополнительной катушке для получения необходимого всплеска напряжения, для запуска схемы. После чего она становится самодостаточным устройством.

    Удивительно то, что проблема состоит в том, чтобы выключить устройство, поскольку оно работает само по себе. Чтобы справиться с этим, Стефан использует двух полюсный выключатель, чтобы отключить выход от входной части схемы. Чтобы узнать работает ли схема, параллельно выходу схемы подключен светодиод с токоограничивающим сопротивлением в 820 Ом.

    В видео, к этой схеме показано, что входной ток составляет около 0,2 ампер, а выходной 50А. Для преобразования этого тока в переменный 220в 50Гц можно использовать готовый инвертор. Любой, кто хочет попробовать повторить это устройство должен будет поэкспериментировать с числом витков в каждой катушки и диаметром проводов. Штефан утверждает, что вам необходимо иметь как минимум вдвое больше медного провода по весу в (черных) выходных катушках чем в (синих) входных катушках, для того чтобы позволить устройству производить избыточную мощность.

    На сайте где выложено видео есть сообщения об успешных повторения данного устройства.

    Флойд Свит VTA.

    Еще одно устройство в той же категории с постоянными магнитами и катушками вокруг него было создано Floyd Sweet. О нем известно очень мало практической информации. Устройство получило название «Вакуумный триодный усилитель» или «VTA» Тома Бердена.

    Устройство способно производить более 1 кВт мощности в 120 вольт, 60 Гц и питать себя. Выходная энергия, которая похожа на электроэнергию, тем что питает моторы и лампы, но при увеличении мощности нагрузки устройство самоохлаждается вместо ожидаемого повышения температуры.

    Кроме того устройство теряло в весе при подключении нагрузки. Когда об этом устройстве стало известно, Флойду начали угрожать. Хотя это явление не новое, оно предполагает, что устройство деформирует пространство и время. Немецкие ученые в конце Второй мировой войны экспериментировали с этим (и убивали несчастных людей, которые были использованы для тестирования системы) — если у вас есть желание, вы можете прочитать об этом в книге «Охота на Zero-Point «ISBN 0099414988.

    Флойд обнаружил, что вес его устройства уменьшается пропорционально количеству энергии которая производится. Он обнаружил, что при определенной нагрузке возникал мощный шум, как от вихря, хотя никакого движения воздуха не было. Звук слышала и его жена находившаяся в другой комнате. Флойд больше не увеличивал нагрузку в дальнейшем (возможно он получил смертельную дозу радиации при этом). На мой взгляд, это опасное устройство, и я лично, не рекомендую никому, пробовать повторить его. Следует отметить, что крайне опасное напряжение в 20000 вольт использовались в этом устройстве и принципы функционирования его в настоящее время не понятны. Кроме того, недостаточно информации, чтобы дать реальный совет по практическим деталям устройства.

    В одном случае, Флойд случайно сделал короткое замыкание выходных проводов. Произошла яркая вспышка и провода покрылись инеем. Было отмечено, что при выходной нагрузке свыше 1 кВт, магниты и катушки питания устройства охлаждаются, достигая температуры на 20 градусов по Фаренгейту ниже комнатной температуры (около 9 °С). В одном случае, Флойд получил удар током между большим и малым пальцами одной руки, травма была сродни обморожению, причинив ему сильную боль.

    Наблюдаемые характеристики устройства включают в себя:

    1. Выходное напряжение не меняется, когда выходная мощность увеличилась с 100W до 1 кВт.

    2. Устройство нуждается в непрерывной нагрузке не менее 25 Вт.

    3. мощность снижается ранним утром, но восстанавливается позже без какого-либо вмешательства.

    4. Местные землетрясения могут остановить работу устройства.

    5. Устройство может быть запущено в автономном режиме кратковременным подключением 9вольт питания.

    6. Устройство может быть остановлено прерыванием электропитания катушек.

    7. Обычные приборы работают нормально до мощности 1 кВт, но перестают работать, при превышении данного уровня.

    По непроверенной информации, устройство Флойда состояло из одного или двух крупных ферритовых постоянных магнитов (класс 8, размером 150 мм х 100 мм х 25 мм) с катушками намотанными в трех плоскостях взаимно перпендикулярно друг к другу (например, в X, Y и Z оси). Намагничивание ферритовых магнитов осуществляется импульсами в 20000 вольт от банка конденсаторов (510 Дж) или более на катушку (А), при одновременной подаче переменного тока в 1А частотой 60 Гц (или 50 Гц) на катушку возбуждения (А). В дальнейшем устройство будет производить энергию именно с этой частотой.

    Данный процесс кондиционирования заставляет магнитный материал резонировать в течение пятнадцати минут, и приложенное напряжение в катушке возбуждения изменяет позиционирование полюсов вновь образованного магнита так, чтобы он в будущем, резонировал на этой частоте и напряжении. Важно, что бы напряжение, приложенное к катушке возбуждения в этом процессе кондиционирования было чистой синусоидой. Влияние извне может нарушить процесс, но он может быть восстановлен, повторным кондиционированием. Следует отметить, что за один раз процесс кондиционирования не получиться. После завершения кондиционирования, конденсаторы больше не нужны. После этого устройству нужно подать только несколько милливатт 60 Гц на вход катушки возбуждения и устройство будет выдавать до 1,5 кВт при 60 Гц на выходной катушке. Выходная катушка может поставлять ток во входную катушку сколь угодно долго.

    Процесс кондиционирования изменяет намагничивание ферритовых магнитов. Перед процессом Северный полюс находится на одной стороне магнита, а Южный полюс на противоположной. После кондиционирования, полюс Юг не останавливается на середине магнита, а распространяется и на внешних краях Северного полюса, расширяясь вглубь от края примерно на 6 мм. Кроме того, существует созданный в середине Северного полюса магнитный пузырь и положение этого «пузыря» меняется если рядом находится или движется другой магнит.

    Предположительно устройство имело три катушки:

    1. Обмотка А намотана первой вокруг внешнего периметра, каждый оборот 150 + 100 + 150 + 100 = 500 мм (плюс небольшое количество вызванное толщиной обмотки). Она имеет около 600 витков 28 AWG (0,3 мм) провода.

    2. Обмотка В намотана второй через 100 мм сторону, поэтому один оборот составляет около 100 + 25 + 100 + 25 = 250 мм (плюс небольшая длина для обмотки А ). Она содержит от 200 до 500 витков 20 AWG (1 мм) провода.

    3. Обмотка С намотана через сторону 150 мм, так что один виток составляет 150 + 25 + 150 + 25 = 350 мм (плюс на толщину, обмоток А и B). Она содержит от 200 до 500 витков 20 AWG (1 мм) провода и по сопротивлению должна совпадать с сопротивлением катушки ‘B’, насколько это возможно.

    обмотка ‘А’ входная катушка. обмотка «B» это выходная катушка. Обмотка «С» используется для кондиционирования и для производства гравитационных эффектов.

    Значительная часть этой информации и фотографий оригинальных устройств можно найти на этом сайте, где инструкция Майкла Уотсона дает много практической информации. Например, он отмечает, что экспериментальная установка которую он сделал, имеет обмотку А сопротивлением 70 Ом и индуктивность 63 мГн, обмотка B намотана 23 AWG проводом с сопротивлением 4,95 Ом и индуктивностью 1,735 мГн, а обмотка С намотана проводом 23 AWG, с сопротивлением 5,05 Ом и индуктивностью 1,78 мГн.

    Кстати, если в этом устройстве вас интересует эффект потери веса, то позвольте мне упомянуть телевизионный документальный фильм в котором Бойд Бушман продемонстрировал, что существует более простое устройство для преодоления силы тяжести. Бойд является разработчиком оружия с 35-летним опытом. Он разработал прототип ракеты «Стингер». Он перешел в Lockheed в качестве конструктора. Там он экспериментировал с различными вещами, включая модель устройства которое он продемонстрировал.

    Оно состояло из 250 витков 30 AWG эмалированного провода собранного в тороид около 200 мм в диаметре. Обмотка была кругового сечения без сердечника. Обмотка скреплена липкой лентой, и ее же приклеена к столу так чтобы у кольца был свободный ход в несколько сантиметров. Затем он подключил катушку прямо в розетку 110V 60 Гц. Кольцо подскочило над столом и зависло.

    Бойд сказал что устройство опасно, так как оно становится очень горячим в течение нескольких секунд. Он заявил, что, по его мнению, при подборе соответствующего напряжения и частоты, кольцо может обеспечить тягу полномасштабному летательному аппарату.

    Дэн Дэвидсон.

    Дэн создал аналогичную «MEG», систему, описанную выше. Его система отличается тем, что он использует акустические устройства с вибрирующим магнитом, который составляет основу трансформатора. Утверждается, что это увеличивает выходную мощность на значительную величину. Его устройство выглядит следующим образом:

    Патент Дэна находится в Приложении, он дает подробную информацию о типах акустических устройств, которые пригодны для этого генератора.

    Павел Imris.

    Павлу был выдан патент США в 1970 году. Патент интересен тем, что он описывает устройство, которое может иметь выходную мощность которых более чем в девять раз больше, чем входную. Он достигает этого в устройстве, которое имеет два электрода, заключенных в колбу из кварцевого стекла, которая содержит газ-ксенон под давлением (чем выше давление, тем больше выигрыш устройства) и диэлектрических материалов .

    Здесь, используется блок питания для одной или более стандартных люминесцентных ламп 42 подключенный к ним через описанное устройство. Это дает выигрыш в мощности, который может быть впечатляющим, когда давление газа в области ’24 ‘и ’25’ на рисунке высокое. В патенте содержится следующая таблица экспериментальных измерений:

    В таблице 1 приведены обозначения полученных данных. Таблица 2 показывает эффективность устройства для каждого из этих испытаний.

    Результаты испытания № 24, где давление газа является очень высоким 5000 Торр, показывают, что входная мощность для каждой 40-ваттная люминесцентной лампы составляет 0,9 Вт для полного свечения лампы. Иными словами, каждая лампа работает на полную мощность на менее чем одной сороковой ее номинальной потребляемой мощности. Тем не менее, мощность потребляемая устройством в этом испытании 333,4 ватт, что с 90 Ватт, необходимыми для запуска 100 ламп, дает общую входную мощность 423,4 ватт вместо 4000 ватт, что было бы необходимо без устройства. То есть мощность более чем в девять раз больше входной мощности.

    Любая 40-ваттная люминесцентная лампа, без использования этого устройства, требует 40 Вт электрической мощности, чтобы дать 8,8 Вт светового потока с КПД около 22% (остальная часть входной мощности превращается в тепло). В ходе опытов №24, входная мощность на лампе составляет 0,9 Вт для 8,8 ватт света КПД более 900%. С этим устройством в цепи, каждой лампе необходимо только 0,9 Вт потребляемой мощности, это только 2,25% от первоначальной мощности. Весьма впечатляющие показатели для такого простого устройства.

    Майкл Огнянов автономное устройство.

    Заявка на патент США 3766094 дает сведения об интересных устройствах. Хотя это всего лишь описание, а не полный патент, информация, решительно предполагает, что Майкл построил и испытал многие из этих устройств.

    Хотя мощность невелика, конструкция представляет значительный интерес. Вполне возможно, что устройство работает собирая энергию от многих радиостанций, хотя не имеет ничего, что представляет антенну. Было бы интересно протестировать устройство, во-первых, с телескопической антенной, а во-вторых, помещенного в металлическую коробку с заземлением.

    Устройство построено методом литья небольших блоков из смеси полупроводниковых материалов, таких как селен, от 4,85% до 5,5% теллур, от 3,95% до 4,2% германия, от 2,85% до 3,2% неодима, и от 2,0% до 2,5 % галлия. В результате формируется блок с куполом в который упирается зонд из металла. Когда на это устройство кратко подается переменный сигнал в диапазоне частот от 5,8 до 18 МГц, то устройство становится автономным и может поставлять электрический ток для внешнего потребителя. Схема устройства показана здесь:

    Схема электрического подключения показана ниже:

    Майкл Мейер, Ив Мейс Изотопный генератор.

    Французский патент номер FR2680613 от 19 августа 1991, озаглавленный » Activateur pour Mutation Isotopique «, который дает некоторые весьма интересные сведения. Описанная система представляет собой автономный генератор энергии, который дает большое количество энергии из обычного бруска железа.

    Изобретатели описывают процесс «изотопный эффект мутаций», при котором обычное железо (изотоп 56) превращается в 54 изотоп железа, высвобождая большое количество электрической энергии. Эта избыточная энергия может, быть использована для инверторов, двигателей или генераторов.

    Описание механизма, который используется в устройстве: «Настоящее изобретение использует физический феномен, на который мы обратили внимание и который мы называем » Isotopic Change’. Физический смысл в следующем: 56 изотоп железа, содержит 26 протонов, 26 электронов и 30 нейтронов, что дает в общей массе 56,52 Мэв, хотя его фактическая масса 55,80 Мэв. Разница между расчетной массой и фактической массой 0,72 Мэв, что соответствует энергии сцепления ядер нуклонов 0,012857 Мэв.

    Таким образом, если ввести дополнительно 105 эВ энергии железному ядру изотопа 56, то основной изотоп будет иметь уровень энергии 0,012962 МэВ на нуклон соответствующей железу изотопа 54. Созданная нестабильность будет передавать энергию изотопа железа 56, изотопу 54, вызывая потерю 2 нейтронов.

    Этот процесс порождает избыточную энергию 20000 EV с железа изотопа 54 лишь 0,70 МэВ в то время как 56 изотоп имеет 0,72 Мэв. Чтобы добиться этого преобразования, мы используем принцип ядерного магнитного резонанса.

    Практическим методом для этого преобразования является устройство из трех катушек провода на прутке из железа, как показано на этой схеме:

    Катушка 1: производит 0,5 Тесла, при подаче на нее постоянного тока, превращая железным прут в электромагнит

    Катушка 2: производит 10 милли-Теслы, при подаче на нее переменного частотой 21 МГц синусоидального сигнала

    Катушка 3: это выходная катушка, обеспечивает 110, 220 или 380 вольт переменного тока около 400 Гц в зависимости от количества витков в катушке

    Эта простая и дешевая система обладает потенциалом для получения мощности в течение очень долгого времени. Изобретатели утверждают, что это устройство может быть автономным, и питать внешние устройства. Катушка 1 намагничивает железный стержень как в электромагните. Катушка 2 создает переменное магнитное поле в резонанс с изотопом 56 атомов железа в стержне, и это вызывает преобразование в изотоп 54 и освобождение избыточной энергии. Катушка 3 выдает необходимое выходное напряжение.

    Колман / Седдон-Gilliespie Generator.

    Это устройство, запатентованное Гарольд и Рональд Колман Седдон-Гиллеспи 5 декабря 1956 г. весьма примечательно. Это крошечное устройство, которое легко может производить электричество, используя автономное питание для электромагнита из химических солей. Срок службы устройства оценивается примерно в семьдесят лет при мощности в один киловатта.

    Работу устройства запускает передатчик, который облучает химическую смесь радиоволнами частотой 300 МГц. Химическая смесь производит радиоактивные выбросы в течение одного часа максимум, поэтому передатчик должен быть запущен в течение от пятнадцати до тридцати секунд после каждого часа. Химическая смесь защищена экраном для предотвращения вредного излучения, патент 763062 ГБ находится в Приложении.

    Этот генератор состоит из электромагнитов, кварцевой трубки с указанной химической смесью элементов, ядра которых становятся нестабильными, в результате воздействия коротких волн, элементы становятся радиоактивными и высвобождают электрическую энергию, смесь находится между контактами из, пары различных металлов, таких как медь и цинк, и конденсатор установлен между этими металлами.

    Смесь желательно делать из элементов, кадмий, фосфор и кобальт с атомным весом 112, 31 и 59 соответственно. Смесь, делается в порошкообразном виде, засыпается в кварцевую трубку и сжимается между гранулированным цинком на одном конце трубки и гранулированной меди на другом конце, концы трубки закрыты латунными колпачками и трубка ставится в подходящий держатель таким образом. что она находится между полюсами магнита. Магнит, желательно электромагнит, и подключается к выходу устройства. Передатчик который используется для приведения в действие генератора, может быть любого электронного типа УКВ диапазона.

    Передатчик желательно применить с возможностью настройки частоты. Кварцевая трубка, содержащая химические смеси, работает лучше, если расположить смеси как показано на рисунке зеленый сектор -медный порошок, желтый сектор -это цинковый порошок, голубой сектор — это смесь из химических элементов указанных выше. При длине трубки в сорок пять миллиметров и пять миллиметров в диаметре, можно сделать около четырнадцати секторов .

    Ганс Колер.

    Разработал устройство, которое он назвал «Stromerzeuger», которое состояло из магнитов, плоских катушек и медных пластин с первичной схемой, питаемой от батарейки. Выход со вторичной схемы использовался для питания ламп и утверждалось, что мощность во много раз больше входной мощности и она будет работать до бесконечности.

    Устройство состоит из двух параллельно соединенных плоских катушек имеющих магнитную связь между собой. Одна из катушек состоит из медных листов и называется «пластинчатая катушка». Другая состоит из нескольких тонких параллельно соединенных изолированных проводов и называется «катушка обмотки», проходит параллельно пластине, на небольшом расстоянии. Обе катушки питаются отдельно от двух аккумуляторов (6 Вольт, 6,5 AHR). По крайней мере, две батареи, необходимы для запуска аппарата впоследствии, одна батарея может быть удалена.

    Катушки состоят из двух половин соединенных бифилярно. Пластинчатая катушка содержит также железные стержни соединенные серебряными проводами. Эти стержни намагничиваются отдельной батареей через обмотку возбуждения. Электрически, обмотка возбуждения полностью изолирована от других обмоток. Ганс говорит, что энергия производится в основном в этих железных прутьях и обмотки играют существенную роль в этом процессе.

    Следует отметить, что катушка питания включается в первую очередь. Вначале, она потребляет ток 104 мА. Потом включаются одновременно пластины и обмотка возбуждения и ток потребления в катушке питания сократился с 104 мА до 27 мА.

    Предполагается, что электрон является не только отрицательно заряженной частицей, но и южным магнитным полюсом. Новой особенностью является то, что возможно подключение обмотки через постоянные магниты, как показано здесь:

    Утверждается, что при включении первичного контура, происходит «Разделение зарядов» с M1 становится положительно заряженным и M2 становится отрицательно заряженным, это называется «Магнитной поляризацией», она образовалась, благодаря наличию магнитов. При выключении первичного контура, происходит обратная поляризация, но магниты не оказывают влияния на поляризационный ток.

    Два элемента показанных выше размещаются рядом. Медные пластины расположены близко друг к другу (предположительно как пластины конденсатора):

    Вторичные обмотки в точности равны и намотаны в одном направлении. При включении первичной катушки, электроны во вторичной катушке движутся из Р1 в Р2 и из F1 в F2. Это основной принцип.

    (прим.переводчика Выше описанное устройство имеет крайне сложный для меня набор слов и так как практической информации по нему нет, то я решил не упираться и оставляю его как есть, если кому интересно можете почитать оригинал).

    Один из самых крупных разработчиков устройств свободной энергии это Дон Смит, который создал много впечатляющих вещей, как правило, большой мощности. Они являются результатом его в глубоких знаний и понимания того как устроена окружающая среда.

    Дон утверждает, что он повторил каждый из экспериментов описанных в книге, Тесла. И понял как извлекать энергию из окружающего пространства, которую сейчас называют энергия нулевой точки. Дон отмечает, что он уже продвинулся дальше, чем Тесла в этой области, отчасти из-за возможностей которые доступны теперь и которые не были доступны, когда Тесла был жив.

    Дон подчеркивает два ключевых момента. Во-первых, диполь вызывает возмущение в магнитной составляющей окружающей среды и этот дисбаланс позволяет собирать большие объемы электроэнергии, используя конденсаторы и катушки индуктивности. Во-вторых, вы можете производить любую мощность какую хотите от одного магнитного возмущения, без дополнительных затрат. Это позволяет производить большую мощность при малых затратах на первоначальное магнитное возмущение. Это устройство с КПД > 1. Дон создал около пятидесяти различных устройств на основе этих знаний.

    Хотя информация удаляется довольно часто, есть одно видео http://www.metacafe.com/watch/2820531/don_smith_free_energy, которое было зарегистрировано в 2006 году и охватывает много, из того что Дон сделал. В видео, делается ссылка на сайт Дона, но вы увидите, что там нет ничего конкретного и речь идет о безобидных вещах которые не имеют никакого значения, Хозяева нефти сделали это по-видимому с целью сбить с толку новичков. Вебсайт, http://www.28an.com/altenergypro/index.htm который как я понимаю, находится в ведении сына Дона содержит краткие сведения о его прототипах и теорию. Вы можете загрузить документ PDF отсюда http://www.free-energy-info.com/Smith.pdf в нем вы найдете описание патентов на наиболее интересные устройства, которые, как представляется, не имеют никаких особых ограничений на выходную мощность. Ниже приводится копия этого патента.

    Патентная NL 02000035 20 мая 2004 Изобретатель: Дональд Ли Смит

    Трансформатор генератора магнитного резонанса в электрическую энергию

    Настоящее изобретение описывает устройство Электромагнитного диполя и метода, при котором неиспользуемая радиантная энергия преобразуется в полезную электрическую мощность. Диполь, в качестве антенны адаптирован для использования с пластинами конденсатора таким образом, что Heaviside Current Component становится источником полезной электрической энергии.

    Данное изобретение связывает дипольную антенную систему и электромагнитное излучение. Изобретение собирает и преобразует энергию, которая излучается бесполезно обычными устройствами.

    Поиск в Международной патентной базе не выявил каких-либо аналогов.

    Изобретение является новым и полезным подходом к конструированию трансформаторов и генераторов, который заключается в том чтобы преобразовывать теряемое электромагнитное излучение электроприборов и магнитных изменений в полезную электрическую энергию. Гаусс-метр показывает, что большое количество энергии от традиционных электромагнитных устройств излучается в окружающую среду впустую. В случае обычного трансформатора радикальные изменения в конструкции позволят получить от него гораздо больше энергии. Установлено, что при создании диполя и вставки пластин конденсатора под прямым углом к направлению тока, магнитные линии могут переходить в полезную электрическую энергию. При этом магнитные линии, проходящие через пластины конденсатора не исчезают и продолжают создавать ток. Можно использовать один, или, несколько пластин конденсаторов если это необходимо. Каждый конденсатор увеличивает полезную мощность в нагрузке не оказывая никакого влияния на первичные магнитные линии, что невозможно в обычных трансформаторах.

    Краткое описание чертежей

    Диполь создает магнитный поток вокруг себя, чтобы перехватить его, пластины конденсатора установлены под прямым углом к оси диполя. Электроны из окружающей среды собираются пластинами конденсатора. Южный и Северный полюс являются основными компонентами активного диполя. Примеры, представленные здесь существуют как полностью функциональные прототипы и были построены инженерами и полностью проверены. В каждом из трех примеров показанных на рисунках, используются соответствующие части.

    Рис.1 показывает суть метода, где N Северный и S южный полюса диполя.

    Здесь, 1 это диполь с Северным и Южным полюсом. 2 резонансная высоковольтная катушка 3 показывает электромагнитных линий излучаемых диполем. 4 показывает положение и направление потока энергии вызваного индукционной катушка 2. 5 диэлектрическая пластина конденсатора 7. 6 на этом рисунке, показывает виртуальный предел сферы распространения электромагнитной линий.

    Рис.2 состоит из двух частей А и В.

    Рисунок 2A. 1 отверстие в пластине конденсатора, через которое проходит диполь изображенный на рисунке 2B он имеет Северный и Южный полюс как показано на рисунке. 2 резонансная высоковольтная катушка, которая располагается ближе к южному полюсу диполя 1. Диэлектрический разделитель 5, представляет собой тонкий пластиковый лист помещаемый между двумя пластинами конденсатора 7, верхняя пластина может быть изготовлена из алюминия, а нижняя из меди. Аккумулятор 8 соединен с инвертором 9, который производит 120 вольт при 60 Гц для США или 240 Вольт 50 Гц для не таких продвинутых стран. 10 просто указывает, на соединительные провода. Блок 11 это высоковольтный генератор такой как неон трансформатор с источником переменного тока.

    На Рис.3 изображено устройство в котором в качестве активного диполя применяется плазменная трубка. 5 это диэлектрик между двух пластин конденсатора 7, верхняя пластина из алюминия, нижняя из меди. Соединительные провода 10. плазменная трубка 15. Плазменная трубка четырех футов высоты (1,22 м) и шесть дюймов (100 мм) в диаметре. Высоковольтный источник энергии для активного плазменного диполя 16 и есть разъем 17. как удобный способ подключения к пластинам конденсатора при проведении тестирования устройства.

    На Рис.4 показан производственный прототип, построенный и полностью протестированный. 1 Диполь представляющий собой металлический стержень. 2 резонансная высоковольтная индукционная катушка, провода 10 подключены к разъему 17, который облегчает подключение высоковольтного источника энергии. Зажимы 18 удерживают верхние края конденсатора на месте. 19 основание с кронштейнами для крепления всех элементов конструкции. 20 корпус конденсатора и 21 контакты конденсатора с которых снимается полезный постоянный ток.

    Наилучший способ воспроизведения изобретения.

    Изобретение применимо везде где нет электричества, нефти и газа. Малые размеры и высокая эффективность делают его привлекательным вариантом, особенно для удаленных районов, домов, офисных зданий, заводов, торговых центров, общественных мест, транспорта, систем водоснабжения, электрических поездов, катеров, кораблей. Материалы для изготовления устройства как правило доступны в магазинах и требуется средняя техническая квалификация чтобы собрать устройство.

    1. Излучаемый магнитный поток от диполя, перехватывается пластинами конденсатора установленными под прямым углом, и превращается в полезную электрическую энергию.

    2. Устройство и метод преобразуют, как правило, неиспользуемую электромагнитную энергию.

    3. Диполем может быть любой материал в котором присутствуют положительно и отрицательно заряженные частицы, например, металлические стержни, катушки и плазменные трубки.

    Этот патент не дает данных о том как устройство должно быть настроено. Настройку можно осуществить путем изменения частоты входного сигнала на неоновом трансформаторе для получения максимальной отдачи.

    Дон Смит создал около сорока восьми различных устройств потому что понял, что реальная сила во Вселенной магнитная, а не электрическая, эти устройства имеют исполнения, которые ошеломляют ученых думающих. что электроэнергия является единственным источником мощности. Одно из устройств, которое серийно выпускается в России, показано здесь: (где бы найти этот завод:))

    Энергия из эфира для дома самому сделать

    Это небольшое настольное устройство, которое, кажется, предназначено для начинающих экспериментаторов, и совершенно неэффективно. Но его внешний вид весьма обманчив. Каждая из восьми пар катушек (по одной с каждой стороны вращающегося диска) производит 1000 вольт на 50 А (пятьдесят киловатт) выходной мощности, что дает в общем выходную мощность 400 киловатт. Общий размер устройства 16 «X 14.5» X 10 «(400 х 370 х 255 мм). Несмотря на крайне высокую выходную мощность, общая конструкция очень проста:

    Описание рисунка: выходные катушки намотаны на пластиковую трубку в которую вставлен неодимовый магнит разноименными полюсами с противолежащим магнитом с другой стороны диска. Пластиковый диск с отверстиями, в промежутках между отверстиями, площадь покрытая клеем с порошком с неодима.

    Устройство работает за счет колебаний магнитного поля, которое создается при вращении пластикового диска маломощным двигателем постоянного тока. В прототипе показанном выше, использовалась старая виниловая пластинка в которой были просверлены отверстия. Между отверстиями есть области, которые покрыты клеем с пудрой из неодимового магнита. Вращение диска требует очень мало энергии, но оно действует таким образом, как и генератор Ecklin-Брауна, что неоднократно прерывает магнитное поле. Магнитное поле создается неодимовым магнитом в каждой из шестнадцати пластиковых труб. Важно, чтобы изменение магнитного потока между соответствующими магнитами на каждой стороне диска было как можно больше. Идеальный материал для ротора это «Terfenol-D» (вольфрама цирконат) но он дорог, практичнее использовать нержавеющую сталь.

    Для Дона Смита, это не является исключительным устройством. Ниже показаны небольшие устройства с выходной мощностью в 160 киловатт (8000 вольт на 20 A) при входной мощности 12 вольт 1A (КПД = 133 333 %):

    Энергия из эфира для дома самому сделать

    Снова, очень простое устройство для повторения имеющее подробное описание и макет. Тем не менее, некоторые компоненты, не показаны на этом макете. 12в аккумулятор и соединительные провода, заземление, понижающий трансформатор, варистор используемый для защиты нагрузки от перенапряжения и другие детали которые мы рассмотрим позже когда будет дано более подробное описание этого устройства.

    Другие устройства Дона показаны здесь:

    Энергия из эфира для дома самому сделать

    Это большое устройство, в котором используется плазменная трубка четыре фута (1,22 м) в длину и 6 дюймов (100 мм) в диаметре. Результатом является выходная мощность в 100 киловатт. Это проект, показанный в качестве одного из вариантов реализации патентов Дона. Будучи инженером-электриком, Дон делает очень серьезные прототипы. Мы должны понимать, что большую мощность можно получать от очень простых устройств.

    Существует еще один краткий документ «Resonate Electrical Power System» от Дона Смита в котором говорится:

    Потенциальная энергия существует везде и во все времена, и становится полезной, когда превращается в более практическую форму. Этот энергетический потенциал наблюдается косвенно, через проявление электромагнитных явлений, они перехватываются и преобразуются в полезную энергию. В нелинейных системах, сложение магнитных волн усиливает выходную энергию, обеспечивая больше выходной мощности по сравнению с входной. В простой форме это происходит в пианино, где по трем струнам ударяет молоточек. Резонанс между тремя струнами обеспечивает уровень шума больше, чем было затрачено входной энергии. Звуковые колебания это часть электромагнитного спектра поэтому те же эффекты возникают в электромагнитных колебаниях.

    «Полезная энергия» определяется как потенциал окружающей среды. «Электрический потенциал» связан с массой и ускорением. Таким образом, масса Земли и скорость ее движения в пространстве, придает ей огромный электрический потенциал. Люди, как птицы сидят на проводах и не знают о высоком напряжении. В природе постоянно происходят, возмущения окружающей среды, и мы видим это на электрических дисплеях. Симуляция этих возмущений позволяет людям преобразовывать их в полезную электроэнергию.

    Поместим Землю в центре внимания, и рассмотрим ее в целом. Каждую минуту каждого дня (1440 минут), более 4000 проявлений молний происходят. Каждая дает более 10000000 вольт на более чем 200000 ампер в эквиваленте электрической мощности. Это больше, чем 57.600.000.000.000 вольт и 1.152.000.000.000 ампер электрической мощности в течение каждого 24-часового периода. Это продолжается уже на протяжении более чем 4 миллиардов лет. Ученые настаивают, что электрическое поле Земли, является ничтожным и бесполезным, и что это преобразование энергии нарушает законы природы. В то же время, они выдают патенты, в которых, электромагнитные потоки, идущие от Солнца преобразуются в солнечных батареях в энергию постоянного тока.

    Существует тенденция путать «Гамма лучи» с «Гамма излучением». «Гамма излучение » является обычной, повседневной составляющей колебаний магнитного потока, а » Гамма лучи » являются мощной энергией удара, а не потоком. Один гамм магнитного потока равен 100 Вольт RMS. Чтобы убедиться в этом, возьмите плазменный шар заряженный до 40000 вольт. При правильном применении, гамма- метр покажет 400 гамм. 1900000000 гамма которые мы упомянули, эквивалентно 190000000 вольт электроэнергии. Это при обычной Солнечной активности, в дни выбросов на Солнце гамма излучение может быть в 5 раз больше. (очевидно речь здесь идет о солнечном или эфирном ветре.)

    Есть два вида электричества: «Потенциальное» и «полезное». Все электричество является «потенциальным», пока его не преобразовали в полезное. Колебания электронов, активизирует электрический потенциал, который присутствует везде. Интенсивность / CPS колебаний магнитного потока и его частота определяет объем доступной энергии. Это необходимо учитывать при конструировании оборудования. Так, например, энергия, приходящая от Солнца в солнечных батареях преобразуется в постоянный ток, который затем преобразуется в соответствии с дальнейшим использованием. Только магнитный поток движется из точки «А» (Солнце) до точки «Б» (Земли). Все электроэнергетические системы работают точно так же. Движение катушек и магнитов в точке «А» (генератор) возбуждают электроны, которые в свою очередь, возбуждают электроны в точке «B» (ваш дом). Ни один из электронов точки «А», не передается в точку «B». В обоих случаях электроны всегда остаются неиспользованными и доступны для дальнейшей работы. Это не позволяется в ньютоновской физике (электродинамика и законы сохранения энергии). Очевидно, что эти законы являются неадекватными.

    В современной физике, нет места старой академии наук, она просто не сможет в ней существовать, поскольку она открывает двери для сверхединичности. Хорошей новостью является то, что Патентное ведомство выдало сотни патентов многие из которых являются сверхединичными.

    Любая катушка при подаче на нее тока будет заставлять электроны вращаться и производить полезную энергию. Теперь, когда мы описали методы преобразования энергии, давайте посмотрим может помочь нам.

    Вся система уже существует, и все, что нам нужно сделать, это подключить устройство таким образом, чтобы извлекать энергию для наших целей. Давайте изучим это и начнем с обычного трансформатора. Только магнитный поток проходит от входной обмотки в выходную обмотку а не электроны. Таким образом, нам нужно создать поток только через выходную обмотку трансформатора, чтобы иметь электрическую мощность. Плохая конструкция, гистерезис в металлических пластинах, ограничивает мощность нагрузки. Плюс потери в виде тепла. Правильная конструкция и материалы позволит всего этого избежать.

    Конденсатор может использоваться для коррекции коэффициента мощности системы. Эти же конденсаторы, установленные в паре с первичной обмоткой трансформатора создают колебательный контур, который создает необходимые колебания магнитного потока в трансформаторе.

    Любая колебательная система где меньшее количество электронов возбуждает большее количество электронов — производя на выходе больше, чем на входе нам подходит.

    На данный момент, необходимо представить обновленную информацию об электронах и законах физики. Большая часть этих знаний происходит от меня и поэтому, вероятно, некоторые люди, будут расстроены т.к. они мыслят в рамках традиционной науки.

    В качестве источника электрической энергии, неионые электроны существуют в огромном количестве по всей вселенной. Их происхождение от солнечной плазмы. Когда электроны окружающей среды сталкиваются друг с другом, они выделяют как магнитную так и электрическую энергию. Частота этих столкновений определяет доступную энергию в данном объеме. Практические методы возбуждения электронов использовали движущиеся катушки или магниты. Лучшим способом является возбуждение с помощью резонансной катушки создающей магнитные поля и волны вблизи себя.

    В катушках, магнитный поток и электрический ток являются одним целым. Это означает, что электроны в их естественном неионом виде, существуют в виде пары. Те которые вращаются вправо обеспечивают напряжение, а те которые вращаются влево обеспечивают магнитное поле и ток. Это еще раз показывает, что когда они соединяются, мы имеем (Вольты х Амперы = Ватт) полезной электрической энергии. До сих пор эта идея отсутствовала в базе знаний. Предыдущие определения имели недостатки.

    Энергия связанная с электронами

    Левовращающиеся электроны создают электрическую энергию и правовращающиеся электроны создают магнитную энергию. При столкновении электроны излучают свет и тепло.

    Полезные схемы и предложения по конструированию устройств.

    Энергия из эфира для дома самому сделать

    1. Возьмем Плазменный Шар который продается в радиомагазине и называется «Illumna-Storm» как источник-магнитных резонансных колебаний. Он создает около 400 миллигаусс магнитной индукции. Один миллигаусс равен 100 вольтам магнитной индукции.
    2. Намотаем на него катушку с использованием куска ПВХ трубы диаметром от 125 до 180 мм.
    3. Понадобиться около 10 м многожильного провода который используется в звуковых системах.
    4. Намотайте катушку от 10 до 15 витков провода и оставьте примерно 3 фута (1 м) кабеля про запас на каждом конце катушки. Используйте клей для крепления катушки.
    5. Это станет катушкой L2 обозначенной на схеме.
    6. Теперь у вас есть первоклассная резонансная воздушная система.
    7. Теперь, поставьте два или более конденсатора (на напряжение не менее 5000 вольт). Я использую более чем два 34 мкФ, конденсаторов.
    8. Готово, теперь вы в деле и прощай Чубайс!
    9. Для регулировки Напряжения — Тока и частоты поставьте резистор параллельно первичной обмотке трансформатора.

    Рекомендации: Возьмите «Справочник электронных таблиц и формул», опубликованный Sams, ISBN 0-672-22469-0, также вам потребуется LCR метр.

    Например, если трансформатор должен работать при 60 Гц, то измерив индуктивность в Генри первичной обмотки трансформатора по графикам указанным в справочнике вы сможете найти необходимое сопротивление.

    Теперь необходимо скорректировать емкость конденсатора (или банки конденсаторов). Один Фарад емкости равен одному вольту в течение одной секунды (один Кулон). Берем требуемое напряжение делим на емкость в микрофарадах получаем частоту в герцах.

    Необходимо сделать два заземления. Первое на конденсаторе, второе на первичной обмотке трансформатора. Это ограничит напряжение и сгладит выбросы. Пламегаситель для искровых разрядников и варистор позволят контролировать напряжение и ток. Их выпускают Siemens, Citel Amerika и другие. Варисторы выглядят как плоские конденсаторы размером с монету. В нижеследующей схеме он обозначен как «V — 1».

    Очевидно, что одни и те же блоки присутствуют в предлагаемых схемах: источник мощности, высоковольтный блок, банк конденсаторов для коррекции коэффициента мощности, соединенный со входной обмоткой трансформатора. И наконец, выходная обмотка трансформатора питающая нагрузку. Ни один из электронов источника питания (батареи) не проходит через систему для использования в нагрузке. В любой момент, когда изменяется магнитный поток, число активных электронов также изменяется. Таким образом, контролируя частоту колебаний можно контролировать создаваемый электронами активный потенциал. Активность электронов в точке «А» не такая же как в точке «B», или точке «С». Если магнитный поток колеблется с определенной частотой в Гц, то соответствующее количество электронов будет возбуждаться. Это не нарушает естественных законов и позволяет производить столько энергии, сколько необходимо.

    В качестве высоковольтного модуля удобно использовать 12 вольтовые неоновые трансформаторы. Конденсаторов должно быть столько, сколько необходимо для работы устройства на низкой частоте 50-60Гц. Частота работы 12-вольтовых неоновые трансформаторов колеблется около 30000 Гц. Конденсатор для низкочастотного трансформатора подбирается исходя из реактивного сопротивления первичной обмотки трансформатора.

    Другой удобный высоковольтный источник это катушки зажигания автомобиля, трансформаторы высоковольтные телевизионные, модули высокого напряжения для лазерных принтеров.

    На основе информации показанной выше, Дон сделал устройство с небольшой чемодан и продемонстрировал его в 1996 году на Тесла конференции. Это устройство было очень простым и маломощным (28кВт), новые версии этого устройства имеют атомные батареи и мощности в диапазоне гигаватт. Используемые в них батареи не более вредны, чем радиация от циферблата часов. Коммерческие устройства размерами с плотину в настоящее время установлены в нескольких точках по всему миру. Из соображений личной безопасности Дона и его контрактных обязательств, информация, которой он поделился здесь является неполной. (я вообще удивлен, почему он еще жив?)

    Я определенно не являюсь экспертом в этой области. Однако, возможно, стоит отметить некоторые из основных моментов, которые Дон Смит использует в своих устройствах. Следующие четыре пункта, стоит отметить:

    1. Напряжение
    2. Частота
    3. Магнитные / Электрические взаимодействия
    4. Резонанс

    Дон Смит указывает, что, конденсаторы и катушки запасают энергию, если они участвуют в цепи, но количество этой энергии пропорционально квадрату напряжения/тока. Удвоение напряжения увеличивает мощность в четыре раза. Увеличьте напряжение в десять раз и получите мощности в сто раз больше!

    Дон говорит, что запас энергии, пропорционален частоте, на которой работает система. Конденсаторы и катушки индуктивности могут временно хранить электроны, а их энергия определяется по формуле:

    Энергия конденсатора. W = 0,5 х С х V х V х H, где:

    W — энергия в джоулях (Дж = Вольты х Ампер х секунда)

    С — емкость в фарадах

    Fig.14 схема трансформатора для бытовых электрических приборов;

    Fig.15 схема резонансной передачи электрической энергии от источника тока для бытовых электрических приборов.

    ВАРИАНТЫ ИСПОЛНЕНИЯ УСТРОЙСТВА

    Далее будет более подробно описано рекомендуемое исполнение схемы для передачи усиленной резонансной энергии, включающей вышеописанные средства, со ссылками на сопровождающие рисунки.

    Как показано на Fig.1 схема данного изобретения включает в себя: источник питания 10 для выработки электрической энергии, усилитель мощности 20 для резонанса электрической энергии идущей от источника питания 10 для генерации и хранения усиленной резонансной энергии ; и силовой передаточный модуль 30 для передачи усиленной резонансной энергии от усилителя мощности 20 на нагрузку 40.

    Источник питания 10 представляет собой независимый источник энергии, выходное напряжение которого преобразовывается с помощью трансформатора приблизительно до значения, требуемого для нагрузки, после чего передаётся на нагрузку. Однако в данном случае источник питания 10 выполняет лишь роль сопутствующего участка схемы, подающего на усилитель мощности ток или напряжение на усилитель мощности 20, которые этот усилитель усиливает. Источник питания 10 не подаёт электрическую энергию на нагрузку напрямую.
    Независимый источник питания 10 может быть, как переменного, так и постоянного тока. Источник переменного включает в себя источники переменного тока и напряжения. Источник постоянного тока включает в себя источники постоянного тока и напряжения. Если в качестве источника питания используется источник постоянного тока, то его выходное напряжение может быть преобразовано в переменное при помощи инвертора.
    Усилитель мощности 20 производит усиленную резонансную энергию, используя энергию, поступающую от источника питания 10. В исполнении данного устройства усиленная резонансная энергия передаётся на нагрузку через трансформатор. Усилитель мощности 20 производит усиленную резонансную энергию посредством первичной обмотки трансформатора, затем эта усиленная энергия сохраняется в первичной обмотке.
    В данном случае усилитель мощности 20 состоит из первичной обмотки трансформатора и конденсатора, подключенного к первичной обмотке последовательно или параллельно. Усилитель мощности 20 создаёт резонанс энергии поступающей от источника питания 10, усиливает её и сохраняет в обмотке.
    Усилитель мощности 20 содержит катушку индуктивности (L) и конденсатор (C), являющиеся элементами схемы, в которых сохраняется энергия, подсоединёнными к источнику питания 10. для создания последовательного или параллельного резонансного контура с частотой резонанса равной частоте источника питания. Вследствие этого энергия источника питания усиливается в Q раз и сохраняется в катушке и конденсаторе.

    В случае параллельного резонансного контура Q-кратный ток Ig, т.е. Q x Ig, течёт через катушку. В данном случае параллельная резонансная мощность Pp при напряжении Vp на катушке составляет Pp = Q x Ig x Vp ватт.
    В случае использования резонанса, резонансная катушка сохраняет в Q раз большую энергию, чем входная энергия. Тип резонанса может быть выбран согласно задачам проектирования схемы, здесь мощность, генерируемая в катушке, является реактивной и, для удобства, обозначена как мощность P.
    Усиленная резонансная мощность, генерируемая усилителем мощности 20, передаётся на нагрузку 40 через модуль передачи энергии 30, который представляет собой обычный трансформатор. Модуль передачи энергии 30 передаёт энергию, усиленную в Q раз трансформатором в усилителе мощности 20, на нагрузку. Для того, чтобы передавать энергию наиболее эффективно, предпочтительно использовать коэффициент трансформации близкий к 1.

    При последовательном резонансе напряжение V2 вторичной обмотке трансформатора, — «вторичное напряжение V2», может быть вычислено по следующей формуле, основанной на принципе работы трансформатора. В данном случае ток I2 на вторичной стороне, — «вторичный ток I2», принят равным нулю.

    V2 = k x V1 / n или
    V2 = k x Q x Vg / n или
    V2 =(Q / n ) x k x Vg

    Где:
    Q – коэффициент добротности схемы
    n – коэффициент трансформации трансформатора
    k – коэффициент сцепления
    Vg – напряжение источника
    V1 – напряжение между проводниками катушки при последовательном резонансе.
    Во время работы трансформатора вторичный ток I2 течёт по вторичной обмотке трансформатора. Затем наведенное сопротивление Z21 наводится с вторичной стороны на первичную сторону, вследствие этого на первичной стороне возникает подавляющий резонанс.
    Вследствие этого, наведённое сопротивление на первичной стороне, далее называемое «наведённое сопротивление на первичной стороне», рассчитано относительно малым для поддержки резонанса в усилителе мощности 20. В данном патенте выведены и применены для разработки схемы уравнение для напряжения на вторичной стороне и уравнение для определения наведённого сопротивления Z21 при резонансе. Вследствие этого данное устройство, основанное на принципе работы трансформатора, позволяет передавать усиленную резонансную энергию на нагрузку без потерь.
    Нагрузка 40 является цепью, которая питается энергией, усиленной в Q раз в первичной обмотке трансформатора. Если ток во вторичной обмотке не равен нулю, резонанс на первичной стороне трансформатора нарушается наведённым сопротивлением трансформатора. Для предотвращения этого наведённое сопротивление Z21 должно быть отрегулировано и значение сопротивления нагрузки R0 должно быть выбрано оптимальным для поддержки резонанса на первичной стороне трансформатора.

    Структура схемы для передачи усиленной резонансной энергии на нагрузку показана на Fig.2. Данная схема включает: источник питания 10 – источник переменного напряжения с внутренним сопротивлением (Rg); усилитель мощности 20 – первичная обмотка трансформатора (L1) и конденсатор (C1), последовательно подключенный к обмотке (L1); силовой передаточный модуль 30 – трансформатор, нагрузка (R0), получающая резонансную энергию, усиленную силовым передаточным модулем 30.

    На Fig.3 показана схема трёхфазного синхронного генератора. В данной схеме jXs – реактивное сопротивление генератора, а R1 – активное сопротивление обмотки. Данное устройство передаёт электрическую энергию к нагрузке следующим образом: аналогично, как и в схеме для однофазного генератора добавлен конденсатор; энергия усиливается с помощью резонанса; и усиленная резонансная энергия поступает на нагрузку напрямую. Таким образом, данное устройство передаёт усиленную энергию на нагрузку. С другой стороны, обычный источник питания подключен напрямую к нагрузке и передаёт энергию на неё.

    На Fig.4A и Fig.4B показаны схемы, где используется последовательный резонанс для усиления электрической энергии. Данные схемы являются составляющими, источника питания 10 и усилителя мощности 20.

    Для схемы, показанной на Fig.4A. — схема, в которой применяетс последовательный резонанс, если пренебречь сопротивлением катушки R1, то добротность контура определяется, как:
    Qs = omega x L1 / Rg

    Где:
    Rg – внутреннее сопротивление источника питания;
    R1 – сопротивление катушки.

    В данном случае коэффициент Qs в основном больше 10. Также напряжение V1 на катушке (L1) в случае последовательного резонанса определяется, как:

    Мощность P1, сохраняемая в катушке (L1):

    P1 = V1 x Io или
    P1 = Qs x Vg x Io или
    P1 = Qs x Vg^2 / Rg

    Где:
    Io = Vg / Rg (Io является током резонанса)

    Точно так же, мощность источника Pg в случае последовательного резонанса рассчитывается, как:
    Pg = Vg x Io или
    Pg = Vg^2 / Rg следовательно:
    P1 = Qs x Pg показывает, что через катушку (L1) в случае последовательного резонанса, проходит мощность в Qs раз большая, чем входная мощность.

    Как показано на Fig.4B. в схеме, где используется параллельный резонанс, как и в случае последовательного резонанса, на катушку подаётся Q-кратная входная мощность. Поскольку усиление мощности в схеме с параллельным резонансным контуром происходит подобным образом, как и для схемы с последовательным резонансным контуром, то описание этого варианта будет пропущено.

    На Fig.5 представлена схема трансформатора, используемого в модуле передачи энергии 30.

    Если трансформатор в блоке передачи энергии 30 принимается идеальным, то входная мощность P1 передаётся на вторичную сторону без потерь. Поэтому можно принять P1 = P2. Тем не менее, учитывая коэффициент связи k и коэффициент трансформации n можно выразить параметры вторичной стороны следующим образом:

    P2 = V2 x I2 или
    P2 = k2 x P1

    Если имеется внутреннее сопротивление источника Rg и ток на вторичной стороне I2 не равен нулю, то наведённоё сопротивление Z21, подключенное к первичной стороне можно выразить, как:

    Z21 = -(sM)^2 / Z22 или
    Z21 = R21 + jX21 Ом.

    На Fig.6A и Fig.6B схемы для первичной и вторичной сторон трансформатора для случая, когда энергия резонанса, усиленная последовательным резонансным контуром, изображенным на Fig.4A. передаётся на вторичную сторону трансформатора, Fig.5.
    Как показано на Fig.6B в схеме на вторичной стороне трансформатора, I1 – это ток на первичной стороне, а Z12 — взаимная индуктивность.
    Как оказано на Fig.6A. когда схема источника питания построена таким образом, что в ней на первичной стороне имеется последовательный резонансный контур, а нагрузка подключена к вторичной стороне, наведённое сопротивление Z21 возникает в резонансном контуре на первичной стороне. Если схема построена таким образом, что наведённое сопротивление Z21 едва влияет на резонансный контур, то параметры резонанса в этом контуре останутся теми же. Затем энергия, усиленная с помощью резонанса передаётся на вторичную сторону, и на нагрузку поступает уже усиленная энергия.
    Далее следует детальное описание экспериментов для проверки вышеописанного устройства.

    На Fig.7 изображён трансформатор, используемый в экспериментальном устройстве. Трансформатор сконструирован таким образом, что катушки обмотаны вокруг ферритового стержня для образования первичной и вторичной обмоток с индуктивностью 348 мГн и коэффициентом трансформации n:1. Также трансформатор участвует в режиме последовательного резонанса. Активное сопротивление катушек 2.8 Ом, коэффициент связи k равен 0.742.
    В эксперименте в качестве источника питания переменного тока с полным внутренним сопротивлением 50 Ом был использован генератор сигналов Tektronix CFG 280, частота последовательного резонанса была выбрана 304 кГц. Для измерения напряжений был использован осциллограф Tektronix TDS 220.

    Fig.8 – экспериментальная схема устройства для усиления/передачи электрической энергии.

    На Fig.9A и Fig.9B схемы первичной и вторичной стороны схемы с Fig.8.

    На первичной стороне схемы на Fig.9A эквивалентное сопротивление RT может быть выражено, как RT = Rg + R1 + R21. Если нагрузка (Ro) подключена к схеме, коэффициент добротности Qs может быть выражен, как Qs = XL1 / RT. Чем меньше активная составляющая наведённого сопротивления R21, тем большим будет усиление мощности.

    Поэтому, если при проектировании схемы наведённое сопротивление Z21 на первичной стороне минимизировано для поддержания резонанса, то энергия передаётся на вторичную сторону без потерь, и напряжение и ток соответствуют мощности, на вторичной стороне. Соответственно напряжение на первичной стороне, усиленное с помощью последовательного резонанса становиться равным Qs x Vg, а напряжение V2 на вторичной стороне выражается формулой V2 = (Q2 / n) x k x Vg. Если коэффициент связи k равен 1 и коэффициент трансформации n равен 1, то вторичное напряжение V2 усиливается Q-кратного напряжения источника питания Vg, и это же напряжение приложено к нагрузке, подключенной к вторичной стороне.

    Поскольку ток на вторичной стороне I2 равен k x n x I1, если n = 1 и k = 1, то I2 = I1. I1 – ток резонанса на первичной стороне, он передаётся на вторичную сторону без потерь.

    Поэтому мощность P2, передаваемая на вторичную сторону, выражается формулами:

    P2 = V2 x I2 или
    P2 = (Qs / n) x k x Vg x k x n x I1 или
    P2 = Qs x k2 x Vg x I1 или
    P2 = Qs x k2 x P1

    Вышеприведённые формулы показывают, что когда, достигнут резонанс и k = 1, то по значению выходной мощности P2 видно, что на вторичную сторону передаётся Qs-кратная мощность. Нагрузка получает электрическую энергию не от источника питания, но вместо этого получает резонансную энергию, усиленную усилителем мощности, которая и является основным источником энергии. Источник питания выполняет функцию триггера (вспомогательной цепи), позволяющего поддерживать резонанс.

    В экспериментальной схеме, показанной на рисунках Fig.9A и Fig.9B. если принять сопротивление нагрузки Ro равным 170 кОм, то наведённое сопротивление Z21 рассчитывается по формуле:

    Z21 = -(sM)^2 / Z22 или
    Z21 = 1.43 — j5.6 x 10-3 Ом или
    Z21 = R21 + jX21 Ом
    Принимая, что:
    Rg = 50 Ом,
    Ro = 170K Ом,
    XL1 = 665 Ом,
    XL2 = 665 Ом,
    k = 0.742, и
    n = 1.

    Как получается из расчётов, поскольку активная составляющая наведённого сопротивление R21 = 1.43 Ом существенно меньше, чем внутреннее сопротивление Rg = 50 Ом, оно едва ли оказывает влияния на коэффициент Qs, общий показатель производительности схемы. Также, поскольку реактивная составляющая X21 = 5.6 x 10^-3 Ом существенно меньше, чем индуктивное сопротивление первичной стороны, равное 665 Ом, в таком случае резонанс может поддерживаться в течение продолжительного времени.
    В «Table 1» приведены экспериментальные данные при питании нагрузки (Ro) с помощью источника питания с резонансным контуром, внутреннее сопротивление источника Rg = 50 Ом, напряжение 1 В. Данные были получены при коэффициенте связи 0.742. Однако, если коэффициент связи k = 1, то V2 = V1, и энергия передаётся на нагрузку так, как это приведено в Table 1. В данном случае при расчете мощности, поступающей на нагрузку, XL2 можно пренебречь, поскольку Ro во много раз больше XL2.

    Где: = 1 В, k = 0.742, и n = 1.

    Как видно из Table 1. поскольку напряжение источника питания Vg = 1 В, то значение коэффициента добротности Qs численно равно значению напряжения V1, приложенного катушке (L1). Поэтому напряжение V2, переданное на вторичную сторону равно k x V1.

    Также, если I2 = 0, то коэффициент добротности Qs на первичной стороне рассчитывается по формуле:

    Qs = XL1 / (Rg + R1) или
    Qs = 665 Ом / 52.8 Ом итого
    Qs = 12.59.

    В случае, если внутреннее сопротивление источника питания Rg = 50 Ом, активное сопротивление первичной обмотки R1 = 2.8 Ом.

    Т.к. случай, когда сопротивление нагрузки Ro = 1 Мом похож на случай, когда I2 = 0, Qs должен быть равен 12.59, как по теоретическим расчетам, но согласно Table 1 экспериментальное значение равно 8.97. Такой результат получен по причине того, что коэффициент Qs уменьшается из-за реактивного сопротивления катушки на высоких частотах, а также активного сопротивления катушки.

    Поэтому, основываясь на таком результате, сопротивление первичной стороны Reff можно рассчитать следующим образом:
    Reff = XL1 / Qs, что равняется
    Reff = 667 / 8.97 = 74.1 Ом.

    Таким образом экспериментальная схема работает в таком режиме, когда сопротивление Reff = 74.1 Ом, а внутреннее сопротивление источника питания Rg = 50 Ом. Согласно Table 1 коэффициент добротности Qs в зависимости от сопротивления нагрузки Ro равен XL1 / (Reff + R21 ), т.е. Qs = XL1 / (Reff + R21).
    Из Table 1 видно, что при сопротивлении нагрузки Ro = 1.2 кОм, активная составляющая наведённого сопротивления R21 = 202.89 Ом, а усиление напряжения составляет приблизительно 2.4 раза. Поэтому, если схема, спроектированная в расчёте на такие характеристики, работает в таком режиме, то, когда сопротивление нагрузки Ro увеличивается, активная составляющая R1 и комплексное значение Z21 наведённого сопротивления уменьшаются, но увеличивается коэффициент добротности Qs.

    В Table 2 приведены значения. Полученные из формул при коэффициенте связи k равном таковому в резонансной схеме на Fig.8.

    Где: Vg = 1 В, k = 1 и n = 1.
    Из Table 2 видно, что поскольку активная составляющая наведённого сопротивления R21 меняется в соответствии с изменением сопротивления нагрузки Ro, при k =1 в случаях, когда Ro равно 1.2 кОм или 870 Ом, мощность, передаваемая на нагрузку, уменьшается больше, чем при k = 0.742. Такой результат получается, из-за того, что параметрами, влияющие на наведённое сопротивление Z21 являются: коэффициент связи k, сопротивление нагрузки Ro, коэффициент трансформации n и индуктивное сопротивление XL1, зависят от проектирования и исполнения схемы для передачи резонансной энергии.
    В Table 3 приведены сравнения значений мощности предаваемой на нагрузку в случаях, когда нагрузка подключена напрямую к источнику питания и, когда нагрузка подключена через усиления мощности к источнику питания с напряжением 1 В по схеме на Fig.8.

    На Fig.10 схема прямого подключение нагрузки к источнику питания. В данном случае, поскольку значение Ro во много раз больше Rg, то внутренним сопротивлением источника питания Rg можно пренебречь.

    Из Table 1 и Table 3 в случае, когда Qs = 6.56, а сопротивление нагрузки Ro = 10 кОм, то мощность, подводимая к нагрузке больше, чем та же мощность при прямом подключении в 24.2 раза при k = 0.742 и в 31.58 раз при k = 1. Это значит, что мощность, подводимая к нагрузке в Qs^2 раз больше ( наверное автор имел ввиду «приблизительно в Qs^2 раз больше» ) мощности, подводимой при традиционно подключении.

    Следующее детальное описание схемы усиления и питания с использованием параллельного резонанса, основано на результатах эксперимента.
    Электрическая энергия на бытовые потребители передаётся с напряжением 6600 В после чего преобразовывается трансформатором в 220 В, после чего однофазное напряжение 220 В уже распределяется по домам для бытовых потребителей.

    На Fig.11 приведена схема передачи электрической энергии к бытовым потребителям. Схема спроектирована таким образом, что сопротивление нагрузки Ro = 1 Ом, а коэффициент Qp = 8.58. Внутренним сопротивлением источника питания можно пренебречь.
    Напряжение на первичной стороне трансформатора равно 6600 В, а на вторичной – 220 В. Коэффициент k трансформатора равен 1, коэффициент трансформации n = 30 (что равно V1 / V2 или 6,600 / 220). Также сопротивление нагрузки потребителей в доме принимается равным около 1 Ом.

    Индуктивное сопротивление вторичной обмотки трансформатора должно быть подобрано, чтобы составлять 1% от сопротивления нагрузки, т. е. 0.0105 Ом. Поскольку индуктивные сопротивления первичной и вторичной обмоток связаны пропорционально квадрату коэффициента трансформации, то XL1 = n2 x XL2 = 302 x (0.0105) = 9.44 Ом. Поскольку наведённое сопротивление Z21 = -(sM)^2 / Z22 или 0.1 — j0.01 Ом, то можно сказать, что на схему тяжело воздействовать с первичной стороны.

    Поэтому для усиления мощности используется параллельный резонансный контур, как показано на Fig.12.
    Если активное сопротивление первичной обмотки RL1 приблизительно равно 1 Ом, коэффициент производительности схемы Qp = 8.58 (что равно XL1 / Reff или 9.44 ohms / 1.1 ohms). Где Reff =RL1 + R21. Сопротивление R1 в параллельном резонансном контуре равно 81 Ом (Reff x Qp^2 или 1.1 Ом x (8.58)^2). Внутренним сопротивлением источника не можно пренебречь.

    На Fig.13 приведена схема источника тока, модифицированного в соответствии со схемой на Fig.12.
    В данной схеме ток резонанса Io = 81.5 А (V1 / R1 = 6600 В / 81 В). Индуктивное сопротивление первичной обмотки рассчитана на ток 699 А, что соответствует Io x Qp. Напряжение на первичной обмотке – 6600 В, поэтому резонансная мощность P1R = 4613.4 кВатт (V1 x Qp x Io = 6600 В x 699 А).
    Тем не менее в схеме на Fig.11. если пренебречь активным сопротивлением катушки RL1, ток в первичной обмотке I1 будет равен 699 А (V1 / XL1 = 6600 В / 9.44 Ом), поэтому мощность P1, приложенная к первичной обмотке равна 4613.4 кВт (V1 x I1 = 6600 В x 699 А).
    Поэтому резонансная мощность P1R, равная 4613.4 кВт, в случае параллельного резонанса идентична по величине мощности P1, равной 4613.4 кВт, в случае отсутствия резонанса и переданной к нагрузке через трансформатор. Что касается снабжения электрической энергией, мощность P1 = 4613.4 кВт должна производится в условиях отсутствия резонанса. Однако мощность источника питания в случае параллельного резонанса, как показано на схеме на Fig.13. равна 0.54 кВт (V1 x Io = 6600 В x 0.0815 А), т. е. в случае наличия резонанса источник питания должен производить мощность равную P1/Qs. Поэтому, что касается электрогенератора, его выходная мощность значительно увеличится. С другой стороны такой эффект может быть применён идентичным способом и в схемах с последовательным резонансом.
    Данное изобретение может сберечь больше потребляемой энергии, чем традиционный способ.

    А теперь практическое применение всего вышесказанного.

    Далее рассмотрим типичный пример используемый в бытовой технике. Допустим для питания нагрузи необходимо понизить сетевое напряжение с 220 вольт до требуемого напряжения в 6 вольт с помощью трансформатора, и обеспечить ток нагрузки не менее 0,3 ампер.

    Здесь, эквивалентное сопротивление R0 нагрузки составляет 20 Ом (V2 / I2 = 6 вольт / 0,3 AMPS). В целях получения 99% напряжения на нагрузке (Ro), реактивное сопротивление XL2 должно быть 0,2 Ом. Коэффициент трансформации N равен 36,7 (V1 / V2 = 220 вольт / 6 вольт), а реактивное сопротивление первичной обмотки XL1 равно 269 Ом N x N x XL2 = 36,7x 36,7 х 0,2 Ом.

    Кроме того, полное сопротивление Z21 и сопротивления RL1 первичной катушки (L1) выбраны так, что Z21 = — (sМ)^2 / Z22 = 2,7 — j0.027 Ом и RL1 = 40 Ом, полное сопротивление Z21 практически не влияет первичный контур. Схемы замещения такого трансформатора показано на Рис.14, здесь не учитывается внутреннее сопротивление источника питания.

    Здесь с тем чтобы получить 6 вольт на нагрузке (Ro) в 20 Ом, первичный ток I1 должен быть примерно 818 мА (т.е. I1 = V1 / XL1 = 220 вольт / 269 Ом = 818 мА). Сопротивлением RL1 первичной катушки можно пренебречь.

    Таким образом, мощность фактически потребляемая нагрузкой (Ro) определяется первичным напряжением 220 вольт и током 818 мА, на первичной обмотке трансформатора, показанного на Рис 14.

    На рис.15 показана эквивалентная схема замещения, которая настроена для работы в параллельном резонансе.

    На рис.15, не учитывается внутреннее сопротивление источника питания. В эквивалентной схеме с использованием параллельного резонанса, добротность колебательного контура Qp = XL1 / (RL1 + R21) = 269 Ом / (40 + 27) Ом = 6,3. Кроме того, основное R1 сопротивление цепи R1 = (RL1 + R21) X Qp^2 = (40+27) х 6,3 x 6,3 = 1694,7 Ом. Таким образом, ток I1 совпадает с резонансным током I0, Io = V1 / R1 или 220 вольт / 1694,7 Ом = 129,8 мА. Таким образом, ток IQ, протекающий в первичных обмотке имеющее сопротивление XL1, рассчитывается как IQ = Qp X I0 = 6,3 х 129,8 мА или около 818 мА.

    Таким образом, в условиях, когда коэффициент связи между обмотками К=1 и соотношения витков N=36,7, напряжение V2 и ток I2, полученные как V2 = V1 / N = 220 вольт / 36,7 =6 вольт, и I2 = N X IQ = 36,7 х 818 мА = 30 ампер, соответственно, передается в нагрузку на вторичной обмотке трансформатора.

    Однако, поскольку потребляемая мощность нагрузки вызвана мощностью, наведенной в первичной обмотке трансформатора, то нагрузка на самом деле потребляет энергию вызванную напряжением и током первичной обмотки. Таким образом, при резонансе показанном на эквивалентной схеме Рис.14 основной ток I1 составляет около 818 мА, и ток Io, который подается на параллельный резонансный контур показанный на рис.15, составляет около 129,8 мА. То есть, схема может снизить потребление электроэнергии, когда работает в параллельном резонансе в Qp раз, по сравнению с не-резонансным режимом работы.

    Настоящее изобретение предназначено для передачи резонансной мощности через трансформатор, и может использовать как последовательный, так и параллельный резонансный контур. Таким образом, данное изобретение, может быть применено в промышленных приборах, не нарушая законов сохранения энергии.

    Тариел Kapaladze (или, возможно, Тариэл Капанадзе),

    Похоже, что он основывает свою работу по принципам Николы Теслы. Видео в Интернете, показывает одно из его устройств в действии, но видео было удалено. Однако, несмотря на это, ряд полезных вещей можно извлечь из него.

    Видео показывает рабочее устройство во дворе дома, мне кажется, в Турции. Сильный солнечный свет бросает тень, которая не дает разглядеть подробности. По существу, Тариель продемонстрировал одно из своих устройств в стиле свободной энергии Тесла.

    Одним из главных моментов то, что конструкция устройства была самой элементарной, нет намека на дорогие лабораторные работы, и высокую точность. Это может сделать любой грамотный человек.

    Электрические соединения были сделаны путем скручивания оголенных проводов вместе:

    Энергия из эфира для дома самому сделать

    и, при необходимости, зажатые пассатижами:

    Энергия из эфира для дома самому сделать

    Это ясно показывает, что мощное, устройство может быть сделано наиболее простым из методов конструирования — не на дорогих разъемах, а просто скрутками с нулевой стоимостью. (как всегда в России)

    Энергия из эфира для дома самому сделать

    Здесь мы видим катушку Тесла, а на предыдущей фотографии заземление, как и в других системах подобного рода, которые уже были описаны здесь. Вы видите, что толстая первичная обмотка находится ближе к центру вторичной обмотки. Помните, что Дон Смит утверждает, что если первичная катушка расположена по центру, то количество тока, генерируемое катушкой очень большое, несмотря на то, что большинство людей так не думают. Отметим также, что эта катушка Теслы смонтирована на дешевом держателе рулона (очевидно для туалетной бумаги J ). Тариел делает новое устройство для каждой демонстрации и разбирает его на части после этого, так что вполне вероятно, что не нужно больших сил и средств для этой системы.

    Энергия из эфира для дома самому сделать

    Основные компоненты системы показаны здесь и размещаются на одном маленьком столике. Показанны свинцово-кислотная аккумуляторная батарея (которая удалена позднее в ходе демонстрации), как представляется, инвертор для получения переменного напряжения от аккумулятора, умножитель собранный в зеленой коробке из соображений безопасности, Катушка Тесла, разрядник, установленный на коробке и вентилятор для охлаждения компонентов, вероятно, твердотельного осциллятора управляющего катушкой Тесла. Возможно в маленькой коробочке, которой не видно на фото находится блок высоковольтных конденсаторов.

    Организованы два заземления. Первое это старый автомобильный радиатор, лежащий на земле:

    Энергия из эфира для дома самому сделать

    а второй, это оголенный провод подсоединенный к водопроводной металлической трубе, как показано выше. Возможно, что схема этого устройства выглядит так:

    Возможно, батарея питает инвертор и умножитель, который подает высокое напряжение на первичную катушку Тесла, далее с L-2 очень высокое напряжение и ток накапливаются конденсатором и разряжается через разрядник на первичную обмотку трансформатора, который производит более низкое напряжение для питания нагрузки, которой в данном случае, является серия лампочек.

    На фото видно, что Тесла катушка устанавливается на зеленой коробке, а в ней находится понижающий трансформатор. Разрядник устанавливается на непроводящих кронштейнах и имеет очень простую конструкцию из медной катанки. Кроме того конструкция позволяет отверткой регулировать зазор в разряднике:

    Энергия из эфира для дома самому сделать

    Нагрузка состоит из пяти ламп, висящих на щетке, положенной на спинки двух стульев.

    Энергия из эфира для дома самому сделать

    Как вы можете видеть, это не совсем высокие технологии, и высокая стоимость конструкции.

    Первоначально, батарея используется для питания инвертора и это демонстрирует, что инвертор вырабатывает существенно меньше, чем мощность нагрузки. В обычных условиях это представляется невозможным, что является свидетельством того, что обычные условия являются устаревшими и должны быть обновлены с учетом наблюдаемых фактов из демонстрации, подобной этой.

    Поскольку система производит гораздо больше энергии, ч ем требуется, чтобы управлять ею. не будет ли возможно использовать часть мощности для обеспечения входной мощности. Это часто называется «закольцевать», что, и показано в этом видео, в качестве следующего этапа.

    Во-первых, схема меняется таким образом, что входная мощности для инвертора берется с вывода. Аккумулятор отключается и затем убирается, а люди, помогают на демонстрации поднять все активные предметы и удерживают их в воздухе, чтобы показать, что никаких скрытых проводов нет.

    Энергия из эфира для дома самому сделать

    Существует некоторая дополнительная информация о Тариеле, включая видео некоторых из его более мощных, и новых устройств, которые Вы без труда найдете на Заряде.

    Хотя должен сказать, что там не очень много о нем и о его работе в настоящее время.

    Одним из наиболее важных аспектов этого видео является подтверждение работ Теслы и Дона Смита, в котором четко показано, еще раз, что большое количество энергии можно извлечь из окружающей среды, без необходимости сжигать топливо.

    Практическое руководство по устройствам свободной энергии — 5 комментариев

    Большое вам спасибо за проделанную работу на этом сайте.

    У меня не большой вопрос.Если не сложно, то прошу ответить
    Это касается Дона Смита
    Вы писали-
    -но выход из «L2″ имеет гораздо более высокую частоту. Ее можно понизить используя правильное значение резистора «R». Значение резистора, можно узнать из американского справочника American Radio Relay League ну или из графика на рис.44. файла Don’s.pdf. который можно бесплатно загрузить с http://www.free-energy-info.com .
    — к сожалению я не смог найти ни того ни другого указанного по ссылке.
    Если есть таковая возможность, прошу график рисунка 44 приложить как дополнение в статью.
    Заранее Благодарен,
    Игорь

    http://tarielkapanadze.ru/kelly3-2.htm ниже середины найдёте НОМОГРАФ ,попытайтесь там определиться с резистором R

    По поводу «Майкл Мейер, Ив Мейс Изотопный генератор.» — полная ерунда:
    1. Атомная масса Fe56 (Железо) 55,847 а.е.м.(г/моль), а не 55,80 Мэв.

    2. «что соответствует энергии сцепления ядер нуклонов 0,012857 Мэв.
    Таким образом, если ввести дополнительно 105 эВ энергии железному ядру изотопа 56, то основной изотоп будет иметь уровень энергии 0,012962 МэВ на нуклон» — 0,012962 МэВ = 12962 эВ. а не 105 эВ.(Проблемы с Математикой).

    3. Если считать по настоящему то:
    1 — Электроны вообще не учитываются.
    Протонов 26 * 1.00728(Масса протона а.е.м.) = 26,18928(а.е.м.)
    Нейтронов 30 * 1,00867(Масса нейтрона а.е.м.) = 30,2601(а.е.м.)

    Масса сумм нуклонов = 26,18928 + 30,2601 = 56,44938(а.е.м.)
    Дефект Масс = 56,44938 — 55,849(самого ядра) = 0,60038(а.е.м.)
    Отсюда энергия связи 558,95378 Мев или 9,9813175 Мев/Нуклон

    P.S. Автор патента идиот.

    Действительно ли все описанные выше устройства рабочие?
    Кто то повторил?

  • Электрощитовая в жилом доме

    Электроснабжение многоквартирного дома

    Электрощитовая в жилом домеДля того чтобы правильно понимать различные схемы электроснабжения жилых домов. необходимо знать о трех категориях обеспечения надежности электроснабжения электроустановок. Самая простая категория – третья. Она предусматривает питание жилого дома от трансформаторной подстанции посредством одного электрического кабеля. При этом при возникновении аварийной ситуации перерыв в электроснабжении дома должен быть менее 1 суток.

    При второй категории надежности электроснабжения жилой дом запитан двумя кабелями, подключенными к разным трансформаторам. В этом случае при выходе из строя одного кабеля или трансформатора, электроснабжение дома на время устранения неисправности осуществляется посредством одного кабеля. Перерыв в электроснабжении допускается на время, необходимое дежурному электротехническому персоналу для подключения нагрузок всего дома к работающему кабелю.

    Есть две разновидности питания дома от двух разных трансформаторов. Либо нагрузки дома равномерно распределены по обоим трансформаторам, а в аварийном режиме подключены к одному, либо в рабочем режиме задействован один кабель, а второй является резервным. Но в любом случае кабели подключены к разным трансформаторам. Если в электрощитовую дома проложены два кабеля, один из которых является резервным, но имеется возможность подключать эти кабели только к одному трансформатору подстанции, то мы имеем только третью категорию надежности.

    При первой категории надежности электроснабжения жилой дом запитан двумя кабелями, так же как и при второй категории. Но при выходе из строя кабеля или трансформатора, нагрузки всего дома подключаются к работающему кабелю при помощи устройства автоматического включения резерва (АВР).

    Существует особая группа электроприемников (пожарная сигнализация. системы дымоудаления при пожаре, эвакуационное освещение и некоторые другие), которые всегда должны быть запитаны по первой категории надежности. Для этого используют резервные источники электроснабжения - аккумуляторные батареи и небольшие местные электростанции.

    По существующим нормативам по третьей категории надежности осуществляют электроснабжение домов с газовыми плитами высотой не более 5 этажей, дома с электроплитами с количеством квартир в доме менее 9 и дома садоводческих товариществ.

    Электроснабжению по второй категории надежности подлежат дома с газовыми плитами высотой более 5 этажей и дома с электроплитами с количеством квартир более 8.

    По первой категории надежности в обязательном порядке осуществляют электроснабжение тепловых пунктов многоквартирных домов, в некоторых домах и лифты. Следует отметить, что по первой категории в основном осуществляют электроснабжение некоторых общественных зданий: это здания с количеством работающих свыше 2000 человек, операционные и родильные отделения больниц и т. д.

    На рисунке показана схема электроснабжения четырех подъездного дома, запитанного по второй категории надежности с резервным кабелем. Переключение питающих кабелей осуществляется реверсивным рубильником, имеющим положения «1», «0» и «2». В положении «0» оба кабеля отключены. От автоматических выключателей QF1….QF4 запитаны линии, которые идут по подъездным вертикальным стоякам, от которых питание берется на квартиры. Обще домовые нагрузки: освещение лестниц, подвалов, светильники над входными дверями в подъезды питают отдельной группой, содержащей свой учет электроэнергии.

    Электрощитовая в жилом доме

    Рис. 1. Схема электроснабжения многоквартирного дома

    В зависимости от количества квартир в доме все электрооборудование может быть размещено и в одном электрошкафу, и в нескольких. Как выглядит электрооборудование электрощитовых жилых домов показано на фотографиях. На фотографии 1 – вводные устройства и узлы учета. На фотографии 2 – реверсивный рубильник с предохранителями. На фотографии 3 – автоматические выключатели на отходящих линиях.

    Электрощитовая в жилом доме

    Вводные устройства и узлы учета многоквартирного жилого дома

    Электрощитовая в жилом доме

    Реверсивный рубильник с предохранителями

    Электрощитовая в жилом доме

    Автоматические выключатели на отходящих линиях

    Если бы в школе был предмет: «Основы электроснабжения нашего дома», то аварии, вызванные выходом из строя различных силовых рубильников и разъединителей на линиях электропередачи и в трансформаторных подстанциях, случались бы намного реже. Нас с детства приучают мыть руки перед едой и рассказывают, как правильно переходить дорогу. Но никто нас не учит, что если в квартире погас свет, то следует немедленно отключить от сети все мощные электроприборы: утюги, обогреватели и электроплиты.

    К примеру, если отключение сети произошло в результате перегорания предохранителя в электрощитовой дома, то для возобновления электроснабжения электрикам потребуется выключить рубильник, заменить предохранитель и снова включить рубильник. Срок «жизни» всех коммутационных аппаратов очень сильно зависит от величины коммутируемой нагрузки.

    Если бы все жильцы дома отключали свои электроприборы от сети при пропадании напряжения, то такие включения происходили бы при значительно меньших токах и рубильники служили бы намного дольше.

    В нашем примере, когда электрики будут выключать рубильник, то в цепи двух фаз с несгоревшими предохранителями в момент разъединения контактов можно наблюдать яркую вспышку – на доли секунды вспыхнет дуга, от которой постепенно обгорают контакты.

    Электрик Инфо - электротехника и электроника, домашняя автоматизация, статьи про устройство и ремонт домашней электропроводки, розетки и выключатели, провода и кабели, источники света, интересные факты и многое другое для электриков и домашних мастеров.

    Информация и обучающие материалы для начинающих электриков.

    Кейсы, примеры и технические решения, обзоры интересных электротехнических новинок.

    Вся информация на сайте Электрик Инфо предоставлена в ознакомительных и познавательных целях. За применение этой информации администрация сайта ответственности не несет. Сайт может содержать материалы 12+

    Перепечатка материалов сайта запрещена.

    Электрощитовая в жилом доме

    *****

    20.07.2015 14 июля управление федеральной антимонопольной службы по Псковской области выдало предупреждение о прекращении действий, содержащих признаки нарушения антимонопольного законодательства, ОАО «Псковэнергосбыт» в лице Великолукского межрайонного отделения «ОАО «Псковэнергоагент». Об этом Псковскому агентству информации сообщили в пресс-службе антимонопольного ведомства.

    10.07.2015 В раздел сайта "Разработка проекта электроснабжения / Нормативная литература" добавлены ГОСТ 21.001-2013 и ГОСТ 21.607-2014

    Электрощитовое помещение

    Электрощитовое помещение - помещение, доступное только для обслуживающего квалифицированного персонала, в котором устанавливаются ВУ, ВРУ, ГРЩ и другие распределительные устройства.

    Основные требования к электрощитовым помещениям

    Как правило, электрощитовые должны размещаться на первом этаже здания, допускается их размещение в сухом подвале. В районах, подверженных затоплению, они должны устанавливаться выше уровня затопления.

    Электрощитовые не допускается располагать непосредственно под уборными, ванными комнатами душевыми комнатами кухнями пищеблоков и прочими помещениями с мокрыми процессами. Также запрещено их размещение под и над жилыми комнатами.

    В многоквартирном жилом доме, электрощитовую размещают под кухней квартир.

    Входы в электрощитовые должны быть выполнены непосредственно с улицы или из поэтажных внеквартирных коридоров.

    В электрощитовых должны устанавливаться противопожарные двери 2-го типа (EI 30), открывающиеся наружу. Двери должны иметь самозапирающиеся замки. отпираемые без ключа с внутренней стороны помещения. Ширина дверей должна быть не менее 0,75 м, высота не менее 1,9 м.

    По взрывопожарной и пожарной опасности электрощитовые относятся к категории В4

    Электрощитовые помещения следует выделять противопожарными стенами и перекрытиями, их тип зависит от класса функциональной пожарной опасности объекта (СП 4.13130 п. 5.2.6, п.5.4.2, п.5.6.4)

    Через электрощитовые запрещена прокладка воздуховодов и трубопроводов.

    Такие помещения должны оборудоваться естественной вентиляцией. В них должна обеспечиваться температура не ниже 5 °С.

    В электрощитовой должно быть предусмотрено рабочее, аварийное (резервное) и ремонтное освещение. Уровень освещенности 50Лк на полу и 200Лк в зоне размещения оборудования. Для ремонтного освещения должна быть предусмотрена розетка напряжением до 50В.

    Для многоквартирных жилых домов оптимальный размер электрощитовой 3х5м.

    Ширина прохода в свету должна быть не менее 0,8м, высота прохода в свету не менее 1,9м.

    Покрытие полов в должно быть таким, чтобы не происходило образования цементной пыли.

    В электрощитовой должны находиться электрозащитные средства и средства индивидуальной защиты (в соответствии с нормами комплектования средствами защиты), защитные противопожарные и вспомогательные средства (песок, огнетушители) и средства для оказания первой помощи пострадавшим от несчастных случаев.

    *****

    размещение электрощитовой в жилом доме и новый санпин по жилью

    может есть какие-нибудь компенсирующие мероприятия, которые позволят ее оставить на месте?

    Надо внимательно читать нормы.
    В нормах написано "3.11. Над жилыми комнатами. под ними, а также смежно с ними. "
    Ты пишешь "жилой дом, щитовую разместили на первом этаже (отдельный вход) - сверху и слева - квартиры. "
    Квартира это не одно и тоже что жилые комнаты. В квартире кроме жилых комнат есть кухни, санузлы и коридоры. Намек думаю понятен. Если не понятен, то:
    Если читать нормы как ты, то машинное отделение и шахты лифтов, мусороприемную камеру, ствол мусоропровода в жилом доме устраивать нельзя. Внимательно проанализируй на примере своей квартиры где находится у тебя мусоропровод, шахта лифта и к каким помещениям примыкает, и ты увидишь что к жилым комнатам не примыкает (во всяком случае у меня типовой панельный дом, с точки зрения норм все впоряде, даже лестница к жилым комнатам не примыкает, примыкает к кухне и санузлу).

    Последний раз редактировалось MasterZim, 30.01.2011 в 12:31.

    *****

    Требования по размещению электрощитовой в жилом деревянном доме

    Электрощитовая в жилом доме

    Наличие электричества – обязательное условие комфортного проживания в доме: сегодня просто невозможно представить жизнь без привычных бытовых приборов и вечернего освещения. Однако для безопасного и надёжного использования электрической энергии необходимо позаботиться о правильном размещении оборудования и соблюдении правил его эксплуатации.

    Неправильное использование приборов или технологические нарушения при прокладке проводки способны привести к серьёзному пожару с непредсказуемыми последствиями. Размещение электрощитовой в жилом доме из дерева строго регламентируется правилами, которые обязан соблюдать каждый владелец.

    Электрощитовая в жилом доме

    Основные требования к размещению электрощитовой

    Электрощитовая в деревянном доме представляет собой маленькое помещение, в котором устанавливается всё оборудование, необходимое для работы электроприборов: это вводно-распределительные устройства, электросчётчик, устройство защитного отключения и т. д. Электрощитовая в жилом доме относится к числу опасных помещений, поэтому при её размещении должны соблюдаться следующие требования:

    • Электрощитовая в доме из дерева не должна располагаться под сауной, кухней, ванной комнатой и другими помещениями с высоким уровнем влажности. Через неё не должны проходить водопроводные и канализационные пути и иные коммуникации, кроме отопления.

    Электрощитовая в жилом доме

  • Двери должны открываться только наружу, кроме того на них устанавливают самозапирающиеся замки, которые изнутри открываются без ключа. Это может понадобиться при аварийной эвакуации, если возникнет чрезвычайная ситуация.
  • Помещение должно быть обеспечено естественной вентиляцией, температура в электрощитовой не должна опускаться ниже +5 градусов.
  • Электрощиты стараются располагать на уровне глаз, стандартная высота верхнего края щита – 1800 мм. Это позволяет обеспечивать удобный доступ и быстрое проведение работ.
  • Помещение должно обязательно иметь заземляющий контур, кабель может водиться из фальшпола. В одном коробе нельзя располагать слаботочную и силовую сеть, недопустимы скрутки проводов или прокладка кабелей без труб ПВХ.
  • Все эти нормативы призваны максимально обезопасить здание от возможности возгорания, кроме того, они позволяют упростить работу мастера при возникновении любых поломок. Все работы по установке и наладке электрооборудования должны проводиться только специалистом, попытки самостоятельного монтажа создают угрозу и для самого мастера, и для дома.

    Электрощитовая в жилом доме

    Электрощитовая в многоквартирном доме обслуживается управляющей компанией, и в этом случае доступ к оборудованию будут иметь только специалисты. Щитки закрываются на замки во избежание проникновения посторонних, а при возникновении неполадок необходимо вызывать электрика.

    Электрощитовые жилых деревянных домов даже не всегда выделяются в отдельное помещение, очень часто узел ввода – электрощиток – располагают просто в прихожей. В любом случае нужно обеспечить максимальное соблюдение требований безопасности.

    Дополнительные требования к прокладке электропроводки

    Правильно организованная электрощитовая в жилом доме, требования к которой установлены строительными нормами – это ещё не все. Нужно позаботиться о противопожарной безопасности при прокладке электросети по всему зданию, а дом из дерева по многим параметрам намного опаснее здания из кирпича или газобетона. Чтобы проводка не стала причиной пожара, необходимо соблюсти следующие правила:

    Электрощитовая в жилом доме

    1. Силовой кабель может вводиться в дом через стену только с использованием специальной металлической гильзы. Это предохранит дерево от возгорания, даже если кабель будет сильно нагреваться. Аналогичные гильзы нужно использовать при проведении кабеля через любые стены дома.
    2. Внутренняя прокладка проводов в стенах должна проводиться только с использованием металлических труб. Пластиковые короба могут применяться только при наружном монтаже проводки: экономия может привести к скрытому очагу возгорания.
    3. Для деревянных домов рекомендуется выбирать кабели класса ВВГнг (западный аналог - кабели NYM). Огни обладают негорючей изоляцией, которая даже при сильном нагревании не выделяет токсичных веществ.

    Ещё одно важное требование – обязательная установка автоматических выключателей нужной мощности. Если они окажутся маломощными, они не смогут справляться с нагрузкой, в результате чего будут постоянные проблемы с освещением.

    Электрощитовая в жилом доме

    И наоборот, слишком мощные автоматы не будут реагировать на короткие замыкания, что в итоге может привести к возгоранию электропроводки. Для групп освещения рекомендуется устанавливать автоматы, номинал которых составляет 16А, а для мощных потребителей электротока и розеток рекомендуется выбирать 25-амперные автоматические выключатели.

    Особенно сложно прокладывать проводку в помещениях с повышенной влажностью. В деревянном доме они представляют по-настоящему высокую опасность, поэтому используются все возможные меры защиты. В их числе прокладка кабелей в металлических трубах, установка дополнительных УЗО, специальных водонепроницаемых розеток и иной защищённой техники.

    Монтаж электрооборудования в деревянном доме – ответственное и достаточно опасное дело, которое лучше доверять специалистам. Лучше оплатить вызов электрика, чем потом расплачиваться за ремонт дома, повреждённого огнём. Статистика подтверждает, что наиболее распространённой причиной пожаров является именно несоблюдение правил техники безопасности при обращении с огнем и электроприборами.

    Требуется включить JavaScript или обновить плеер!

    В статье сказано, что электросчетчик и вводной автомат устанавливается в щитовой внутри дома в отдельном помещении. Однако, многие представители электроснабжающих компаний, пользуясь 530 постановлением правительства РФ п. 158, обязуют владельцев жилых домов устанавливать дополнительный щиток на фасаде здания или на опоре высоковольтной линии для размещения в нем выше указанных компонентов домовой электросети. Обосновывают это необходимостью беспрепятственного доступа к прибору учета в любое время. Данное размещение электроавтоматики негативно сказывается на ее срок эксплуатации, т.к. даже самый хороший щиток все равно не спасет от перегрева, образования конденсата и работы при минусовой температуре.

    Беглая статейка. Кроме того, что электропроводка должна прокладываться в металлорукавах, и не только в деревянных домах. необходимо обращать внимание на изготовителя самого провода и кабеля. Сейчас на рынке много подделок, а именно на изготовление провода идет сталь обмедненная. Такой провод не соответствует ГОСТу и соответственно очень сильно нагревается и вызывает пожароопасные ситуации, а также повышенное падение напряжения. Так же необходимо обращать внимание на электрооборудование, которое желательно приобретать у известных производителей. Так очень много розеток. выключателей другой электрофурнитуры, с хромированными контактами. Контакты должны быть МЕДНЫМИ или ЛАТУННЫМИ.

    *****

    Нормы проектирования электрощитовых

    7.1.29. Электрощитовые помещения, а также ВУ, ВРУ, ГРЩ не допускается располагать под санузлами, ванными комнатами, душевыми, кухнями (кроме кухонь квартир), мойками, моечными и парильными помещениями бань и другими помещениями, связанными с мокрыми технологическими процессами, за исключением случаев, когда приняты специальные меры по надежной гидроизоляции, предотвращающие попадание влаги в помещения, где установлены распределительные устройства.
    Трубопроводы (водопровод, отопление) прокладывать через электрощитовые помещения не рекомендуется.
    Трубопроводы (водопровод, отопление), вентиляционные и прочие короба, прокладываемые через электрощитовые помещения, не должны иметь ответвлений в пределах помещения (за исключением ответвления к отопительному прибору самого щитового помещения), а также люков, задвижек, фланцев, вентилей и т.п.
    Прокладка через эти помещения газо- и трубопроводов с горючими жидкостями, канализации и внутренних водостоков не допускается.
    Двери электрощитовых помещений должны открываться наружу.

    ("Правила устройства электроустановок. Раздел 6. Электрическое освещение. Раздел 7. Электрооборудование специальных установок. Главы 7.1, 7.2" (утв. Минтопэнерго РФ 06.10.1999))

    8.13. Электрощитовую, помещения для головных станций (ГС), технических центров (ТЦ) кабельного телевидения, звуковых трансформаторных подстанций (ЗТП), а также места для телефонных распределительных шкафов (ШРТ) не следует располагать под помещениями с мокрыми процессами (ванными, санузлами и др.).
    8.14. Помещения ГС, ТЦ, ЗТП должны иметь входы непосредственно с улицы; помещение электрощитовой (в том числе для оборудования связи, АСУЭ, диспетчеризации и телевидения) должно иметь вход непосредственно с улицы или из поэтажного внеквартирного коридора (холла); к месту установки ШРТ подход должен быть также из указанного коридора.

    ("СНиП 31-01-2003. Здания жилые многоквартирные" (приняты Постановлением Госстроя РФ от 23.06.2003 N 109))

    13. ВВОДНО-РАСПРЕДЕЛИТЕЛЬНЫЕ УСТРОЙСТВА, ГЛАВНЫЕ
    РАСПРЕДЕЛИТЕЛЬНЫЕ ЩИТЫ, РАСПРЕДЕЛИТЕЛЬНЫЕ ЩИТЫ,
    ПУНКТЫ И ЩИТКИ

    13.1. ВРУ и ГРЩ, как правило, должны размещаться в специально выделенных запирающихся помещениях (электрощитовых). Двери из этих помещений должны открываться наружу.
    Не разрешается размещать ВРУ и ГРЩ в незадымляемых лестничных клетках.
    Разрешается размещать электрощитовые в сухих подвалах при условии, что эти помещения отделены противопожарными перегородками с пределом огнестойкости не менее 0,75 ч.
    В районах, подверженных затоплению, ВРУ и ГРЩ должны устанавливаться выше возможного уровня затопления.
    ВРУ и ГРЩ разрешается размещать не в специальных помещениях при соблюдении следующих требований:
    степень защиты ВРУ должна быть не ниже IP31;
    устройства и щиты должны быть расположены в удобных и доступных для обслуживания местах (в отапливаемых тамбурах, вестибюлях, коридорах и т.п.);
    аппараты защиты и управления должны устанавливаться в металлическом шкафу или в нише стены, снабженных запирающимися дверцами. При этом рукоятки аппаратов управления не должны выводиться наружу, они должны быть съемными или запираться на замки.
    В помещениях ВРУ и ГРЩ разрешается размещать оборудование слаботочных устройств и систем (усилители телесигналов, контроллеры автоматизированных систем, аппаратуру и щитки системы дымоудаления и т.п.).
    При этом проходы обслуживания между слаботочными устройствами и аппаратурой сильных токов должны соответствовать 4.1 ПУЭ, а панели ВРУ должны иметь исполнение не ниже IP2X.
    13.2. Электрощитовые, а также ВРУ и ГРЩ не допускается располагать непосредственно под уборными, ванными комнатами, душевыми, кухнями пищеблоков, моечными и другими помещениями, связанными с мокрыми технологическими процессами, за исключением случаев, когда приняты специальные меры по надежной гидроизоляции, предотвращающие попадание влаги в помещения, где установлены распределительные устройства. Следует исключать возможность проникания шумов от оборудования электрощитовых, расположенных рядом с помещениями, в которых уровень шума ограничивается санитарными нормами.
    13.3. Прокладка через электрощитовые трубопроводов систем водоснабжения, отопления (за исключением трубопроводов отопления щитовой), а также вентиляционных и других коробов разрешается как исключение, если они не имеют в пределах щитовых помещений ответвлений, а также люков, задвижек, фланцев, ревизий, вентилей. При этом трубопроводы холодной воды должны иметь защиту от конденсации влаги, а горячей воды - тепловую изоляцию.
    Прокладка через электрощитовые газопроводов и трубопроводов с горючими жидкостями, канализации и внутренних водостоков не допускается.
    13.4. Электрощитовые должны оборудоваться естественной вентиляцией и электрическим освещением. В них должна обеспечиваться температура не ниже 5 °С.
    13.5. Распределительные пункты и групповые щитки следует, как правило, устанавливать в нишах стен в запирающихся шкафах. При наличии специальных шахт для прокладки питающих сетей распределительные пункты и групповые щитки следует устанавливать в этих шахтах с устройством запирающихся входов в шахты для доступа к щиткам и пунктам только обслуживающего персонала.
    13.6. В лестничных клетках зданий высота установки осветительных и силовых щитков и пунктов, размещаемых в нишах и не выступающих из плоскости стен, не нормируется.
    Открыто установленные щитки и пункты должны размещаться на высоте не менее 2,2 м от пола, при этом не допускается уменьшение проходов, заданных нормами противопожарной безопасности.
    13.7. Установка распределительных пунктов, щитов, щитков непосредственно в производственных помещениях пищеблоков, торговых и обеденных залах допускается как исключение при невозможности принять иное решение. При установке в торговых и обеденных залах они должны размещаться в нишах строительных конструкций с запирающимися дверцами и иметь надлежащее архитектурное оформление.
    13.8. В учебных кабинетах и лабораториях школ и средних специальных учебных заведений распределительные щитки для питания учебных приборов следует устанавливать вблизи стола преподавателя.
    13.9. В жилых и общественных зданиях запрещается применение комплектных устройств, внутренние соединения которых выполнены с использованием алюминиевых проводников. Допускается использование в распределительных устройствах специальных алюминиевых сплавов.

    ("СП 31-110-2003. Проектирование и монтаж электроустановок жилых и общественных зданий" (одобрен и рекомендован к применению Постановлением Госстроя РФ от 26.10.2003 N 194))