Гигиена

Алгоритм дискриминантного анализа

Решение задач дискриминации (дискриминантный анализ) состоит в разбиении всего выборочного пространства (множества реализации всех рассматриваемых многомерных случайных величин) на некоторое число областей.

Пусть имеются две генеральные совокупности X и Y, имеющие многомерный (трехмерный) нормальный закон распределения с неизвестными, но равными ковариационными матрицами.

Из этих совокупностей взяты обучающие выборки объемами n1 и n2 соответственно:

; (16.1)

Целью дискриминантного анализа в этом случае является отнесение нового наблюдения (строки) из матрицы:

(16.2)

либо к X, либо к Y.

Для решения задачи по обучающим выборкам проводятся оценки векторов средних и ковариационных матриц

; (16.3)

Затем определяется граница дискриминации – константа С.

Оценку дискриминантной функции Ui для i–й строки матрицы Z, которая характеризует i-e наблюдение, подлежащее дискриминации, получается из уравнения:

(16.4)

Если Ui ≥ C, то i–e наблюдение следует отнести к совокупности X, если же Ui < C, то i–e наблюдение относится к совокупности Y.

Дискриминантный анализ допускает наличие более двух обучающих выборок, однако в этом случае задача существенно усложняется и не всегда приводит к однозначной дискриминации, т.е. не все объекты удается отнести к какому-либо классу.


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *