Электронный предохранитель

Новый уровень защиты цепей - электронный предохранитель (e-fuse)

Защита разработанных схем, которые инженеры создали своим "кровью, потом и слезами", является осознанной необходимостью. Она должна интегрироваться как основная характеристика и функция самой разработки.

Предохранители являются адекватной защитой для большинства разработанных схем и многих приложений. В данном обзоре мы рассмотрим характеристики электронного предохранителя (e-fuse), который разработан компанией Texas Instruments .

Что представляет собой защита цепи?

Защита цепи должна обладать следующими характеристиками:

  • Защита от короткого замыкания
  • Ограничение тока
  • Горячая замена
  • Плавное включение
  • Электронный прерыватель цепи
  • Горячее включение
  • Контроль пускового импульса
  • Ограничение мощности нагрузки
  • Максимальная защита по напряжению (OVP)
  • Ограничение FET SOA (т.е. защита самого защитного устройства)
  • Защита от обратного тока (ORing)

Первые семь из вышеуказанных характеристик присущи электронному предохранителю от компании Texas Instruments.

Защитное устройство, как указывалось выше, необходимо использовать для удовлетворения нормативов технических характеристик, таких как IEC/UL60950, IEC/UL60730 и многих других.

Европейские агентства по стандартизации первыми спрашивают о наличии электронного предохранителя для приборов, поскольку стандартные предохранители являются слишком медленными, вызывают затухание, оставляют нагрузку без питания после срабатывания и являются неточными.

Даже не принимая во внимание требования агентств, которые принуждают использовать безопасные методы разработки, разработчики сами хотят предотвратить возможный пожар, минимизировать ущерб путем быстрой изоляции повреждения и предотвратить разрядные помехи по шине питания. Источник питания, коннекторы, силовые FET-транзисторы и нагрузка должны иметь адекватную защиту.

Разработка схемы защиты для вашего устройства

Хороший разработчик не только проверит созданную схему и тщательно ее протестирует, чтобы убедиться, что она удовлетворяет всем спецификациям в отношении температуры и других окружающих условий, но и предусмотрит необходимость установки защитного устройства, такого как стандартный предохранитель, полимерный, самовосстанавливающийся предохранитель (Polyfuse) или может быть электронный предохранитель (e-fuse).

Электронный предохранитель является больше активным, чем пассивным устройством защиты цепи, который обеспечивает ограничение пускового тока, предотвращает повреждение при обрыве нагрузки или отключении входного источника, и имеет внутренний FET-транзистор для управления током нагрузки. Электронный предохранитель также обеспечивает фиксированную или регулируемую защиту по напряжению (OVP), регулируемое время нахождения в неисправном состоянии и/или ограничение тока, гарантирует управление сигнальными лампами для таких состояний как Fault-Неисправность, PG (Power good - Корректность уровня выходного напряжения), и многих других, предоставляет контроль максимальной скорости нарастания выходного напряжения при включении, управляет индикатором выходного тока нагрузки, защитой на стороне коннектора источника или нагрузки, или выполняет другие функции.

Что представляет собой электронный предохранитель?

Электронный предохранитель

Электронный предохранитель

Типичная схема включения

Электронные предохранители могут использоваться в следующих промышленных приложениях - Enterprise class и m-sata SSD (твердотельные накопители), SAS (последовательный SCSI), HDD (жесткие диски), шасси сервера хранения данных, телеприставки, Интернет ТВ, DVD плееры и другие устройства.

Диаграмма "время срабатывания – ток" для обычного плавкого предохранителя по сравнению с электронным предохранителем

Электронный предохранитель

Неточности во времени и ограничения срабатывания приводят к необходимости использования более мощных источников электропитания.

Сравнение самовосстанавливающегося предохранителя с электронным предохранителем

Электронный предохранитель

К тому же самовосстанавливающиеся предохранители (PTC устройства) имеют уменьшенные номинальные и максимально допустимые значения.

Более подробная информация указана на веб-сайте компании Texas Instruments.

*****

Радиосхемы Схемы электрические принципиальные

Электронный предохранитель до 10 Ампер

Схемы источников питания

Во время налаживания или ремонта радиоэлектронной аппаратуры, питающейся непосредственно от электросети, из-за различного рода ошибок может возникнуть короткое замыкание. Для предотвращения повреждения аппаратуры этим явлением следует использовать электронный предохранитель. На рисунке ниже представлена принципиальная схема электронного предохранителя с высоким быстродействием, который рассчитан на ток потребления до 10 А.

Электронный предохранитель

При наличии тока в цепи более-10 А устройство автоматически срабатывает и нагрузка, подключенная к разъему Х2, обесточивается. При подключении электронного предохранителя к сети 220 В на его узел управления подается питающее напряжение — 12 В. Ток течет через резистор R6 и светоизлучатель оптрона U1, так как транзистор VT1 и тринистор VS2 закрыты.

В этот момент открывается фотодинистор оптрона и ток начинает течь через него и резистор R3. Напряжение, выпрямленное мостом VD1. VD4, подается на управляющий электрод тринистора VS1. После открытия тринистор VS1 замыкает диагональ моста и открывает путь сетевому напряжению к нагрузке. В момент превышения тока нагрузки или коротком замыкании в ее цепях падение напряжения на резисторе R10 приводит к открытию транзистора VT1 и тринистора VS2. Тринистор своим малым сопротивлением шунтирует цепь питания светоизлучающего оптрона, что приводит к закрытию фотодинистора оптрона и тринистора VS2. В результате происходит обесточивание нагрузки, о чем свидетельствует загорание светодиода HL1. Для включения электронного предохранителя служит кнопка SB1. В момент нажатия кнопки SB1, когда ее контакты замыкаются тринистор VS2 закрывается, но электронный предохранитель еще остается невключенным, так как цепь питания светоизлучающего оптрона зашунтирована. И лишь при отпускании кнопки, когда ее контакты размыкаются, сетевое напряжение подается на нагрузку. Такое построение схемы позволяет не допустить выхода из строя устройства, а также в случае попытки его включения при коротком замыкании.

Для необходимости ручного отключения нагрузки в электронном предохранителе имеется кнопка SB2. В устройстве могут быть использованы следующие радиодетали. Резистор R10 представляет отрезок провода ПЭВ-1 00,6 мм длиной 2 м, который намотан ha корпус мощного резистора. Все остальные резисторы типа MJIT, рассчитанные на мощность, указанную на схеме. Конденсатор С1 типа К73-17, а С2 и СЗ - К50-6. Диоды VD1. VD4, кроме указанных на схеме, могут быть серий Д232, Д233, Д247, КД203, КД206 и другие на U06p.max не менее 400 В. Вместо диодов КД209Б (VD5,VD6, VD8) подойдут диоды серии КД102, а стабилитрона Д814Д (VD7) можно применить— Д814Г, Д813, Д811, КС213 и другие с напряжением стабилизации 10. 12 В. Тринистор КУ101 (VS2) использовать с любым буквенным индексом, КУ202 (VS1) — с индексами К. Н. Транзистор VT1 из серии КТ361, КТ209, КТ201, КТ502, КТ501, КТ3107 и подобные. Кнопки SB1 и SB2 типа П2К без фиксации. Тринисторы VS1 и диоды VD1. VD4 следует установить на плоских алюминиевых радиаторах размерами 50x80x5 мм. Основная часть деталей устройства монтируется на печатной плате размером 72x52 мм, вырезанной из одностороннего фольгиро-ванного стеклотекстолита. Плата размещается в корпусе, в котором на лицевой его стороне установлены кнопки SB1 и SB2, светодиод HL1 и розетка XI. Собранный правильно из исправных деталей электронный предохранитель в налаживании не нуждается. Для установки требуемого порога срабатывания устройства необходимо подобрать тринистор VS1 и резистор R10 исходя из того, что Ікз < Icp.max При этом сопротивление резистора R10 определяют из формулы:

Электронный предохранитель

Литература: В.М. Пестриков. Энциклопедия радиолюбителя.

*****

Еще одна схема электронного предохранителя

Кто занимается ремонтом тепловозных регуляторов напряжения, таких как ППС-110 или РНВГ-110 знает, что они имеют защиту от пробоя регулирующего транзистора. Если этот транзистор(транзисторы в РНВГ) пробивается, то напряжение в бортовой сети начинает резко повышаться, что чревато выходом из строя электронной аппаратуры. Так вот, чтобы этого не происходило, в регуляторах предусмотрена защита, которая срабатывает при повышении напряжения выше определенного значения. По норме это 135 - 137 вольт. При повышении напряжения выше этого значения открывается мощный тиристор в цепи питания регулятора, создавая короткое замыкание. При этом выбивает "автомат" в составе регулятора. Регулятор обесточивается, напряжение на выходе стартер - генератора пропадает, и бортовая сеть переходит на питание от аккумулятора. Аппаратура спасена, осталось только переключиться на запасной регулятор.

Все это конечно хорошо и правильно, только вот проверять и настраивать эту защиту очень проблематично. Если у кого есть хороший источник, с защитой то и проблем нет. А вот у нас, к примеру, это просто ЛАТР с выпрямителем да автомат(SF1), который почему-то не отрабатывал при срабатывании защиты у испытуемого регулятора. Приходилось его вручную выключать, пока ЛАТР и амперметр не сгорели. Надо было это дело как-то автоматизировать. В итоге получился вот такой электронный предохранитель. И полевик для этого имелся подходящий. Он в УСТЕ применяется, поэтому есть в запасных детальках.

Схема работает очень просто. При включении питания открывшийся транзистор КТ817 подает напряжение в цепь затвора IRFP360, открывая его. Открытый полевик как проволока. имеет сопротивление 0.2 ома. Пока ток в нагрузке не превысил определенного значения, подключенная к источнику нагрузка получает питание. Как только ток в нагрузке стал достаточным для открывания тиристора, он открывается, закрывая при этом КТ817 а следом за ним и полевик. При этом загорается светодиод, сигнализируя о срабатывании защиты. После устранения перегруза нажимаем на кнопку, тиристор закрывается и схема переходит в исходное состояние.

Настраивать регуляторы теперь стало легко и просто. По загоранию светодиода контролируем и если надо регулируем напряжение срабатывания защиты в испытуемом аппарате. Вроде бы все хорошо, но у этой схемы есть недостаток. Трудно настраивать ток и время срабатывания защиты. Приходилось комбинировать кучу малоомных сопротивлений в шунте, добиваясь открытия тиристора при нужном токе. Когда с током заканчивал, нужно было настраивать задержку включения. Настраиваешь задержку, настройка по току нарушается.

В общем, нормальной задержки в данной схеме мне добиться так и не удалось. А тут мне на глаза попалась конструкция амперметра на микроконтроллере. И в ней меня заинтересовала микросхема LM358, которая используется в качестве масштабирующего усилителя мизерного напряжения снимаемого с шунта. Мне эта микросхема так понравилась, что я решил ее использовать в схеме предохранителя. В итоге схема приобрела уже вот такой вид.

Чем хорош этот операционник, это тем, что он может фиксировать очень маленькое напряжение при однополярном питании. У себя в конструкции я его использовал как компаратор. При этом для его опрокидывания достаточно напряжения, которое падает на обычном предохранителе, который в свою очередь является дополнительной защитой, если вдруг электроника откажет.

Настройка теперь тоже упростилась. Подстроечником выставляем ток срабатывания защиты, а подбором резистора и конденсатора в цепи управляющего электрода тиристора выставляем задержку. Слишком большую задержку выставлять не стоит, а то предохранитель будет сгорать быстрее, чем схема отработает. Я добивался того. чтобы защита не успевала отработать на время заряда конденсаторов в регуляторах. Трансформатор подойдет любой, маломощный, с напряжением на вторичной обмотке от 9 до 12 вольт. Если напряжение будет выше то надо подобрать сопротивление в цепи питания микросхемы, что бы ток через стабилитрон не превышал предельно допустимый.

Но это на работе мне понадобился трансформатор, иначе никак не получалось. В лабораторных источниках питания плату запитывают напряжением до регулируемого стабилизатора. У меня в домашнем источнике до стабилизатора 46 вольт. Плата потребляет 25 милиампер. Исходя из этого, вычисляем номинал балластного резистора. Так как блок питания выдает напряжение от 0 до 30 вольт, полевик можно заменить на дешовый IRFZ44N. По параметрам он вполне подходит. Напряжение сток - исток 55 вольт, ток стока 49 ампер, сопротивление открытого канала 17,5 милиом.
Вот упрощенная схема подключения предохранителя.

Конструктивно плату А1 помещаем внутри источника, а плату А2 прикрепляем к лицевой панели, просверлив отверстия под светодиод и под кнопку. По размеру платы получились не очень большие.
Вот как все это выглядит.

Электронный предохранитель

Под полевик решил небольшой радиаторик подложить, так на всякий случай. Если разводить плату не хочется, то вот печатная плата в формате Sprint Layout 4.0

Электронный предохранитель

*****

Устройство предназначено для бесконтактного аварийного отключения питания от электронного прибора при токах, превышающих определенное значение. В принципе, для этих целей обычно ставятся плавкие предохранители, но быстродействие их таково, что сначала выгорает вся электроника, и лишь потом сгорает предохранитель. Электронный же предохранитель отключает нагрузку гораздо быстрее и вероятность повреждения электроники от, скажем, перенапряжения или непредвиденного повышения тока потребления резко сокращается.

Ключевым элементом схемы является транзистор VT2, который в нормальном состоянии открыт и падение напряжения на нем минимально. Светодиод VD1 погашен. При увеличении потребляемого тока падение напряжения на транзисторе увеличивается и начинает открывать транзистор VT1. В результате лавинного процесса VT1 быстро открывается, а VT2 зарывается и отключает нагрузку от источника питания. Загорается индикатор перегрузки (светодиод VD1). При указанных номиналах устройство срабатывает при токе 1А и напряжении питания 9В. Для изменения характеристик предохранителя номиналы резисторов R3 и R4 придется пересчитать по приведенным ниже формулам:

При токе потребления до 1.5 А:

При токе от 1.5 до 10 А:

Устройство предназначено для бесконтактного аварийного отключения питания от электронного прибора при токах, превышающих определенное значение. В принципе, для этих целей обычно ставятся плавкие предохранители, но быстродействие их таково, что сначала выгорает вся электроника, и лишь потом сгорает предохранитель. Электронный же предохранитель отключает нагрузку гораздо быстрее и вероятность повреждения электроники от, скажем, перенапряжения или непредвиденного повышения […]

Похожие материалы:

Свежие записи

Справочные данные

При копировании материалов ссылка на сайт обязательна. Все права защищены. Электрические схемы © 2012-2017

*****

Электронные предохранители с применением герконов.

О. СИДОРОВИЧ, г. Львов, Украина

В статье автор предлагает ряд оригинальных электронных предохранителей для низковольтных цепей, выполненных с использованием реле или реле и тиристоров. Возврат предохранителей в исходное состояние осуществляется кнопкой.

Как известно, геркон (герметичный контакт) представляет собой баллон из стекла, в который впаяны контакты из сплава с большой магнитной проницаемостью. Если геркон поместить в магнитное поле, то возникающая в зазоре магнитная сила притягивает контакты, которые замкнутся после того, как эта сила превысит механические силы упругости контактов [1]. Если катушку, намотанную на корпусе геркона, подсоединить в разрыв цепи, ток через которую необходимо контролировать, то геркон можно использовать в качестве элемента электронного предохранителя, объединяющего в себе датчик тока (катушка) и устройство отключения цепи (контакты). Рассмотрим электронные предохранители на базе геркона КЭМ-3, имеющего такие параметры: время срабатывания — 1,5 мс; время отпускания — 2 мс; максимальный коммутируемый постоянный ток — 1 А; максимальное сопротивление контактов — 0,15 Ом; наработка на отказ — 10 в 6 степени циклов.

Отсюда видно, что быстродействие геркона выше, чем у обычного реле и уж тем более выше, чем у плавких вставок. У плавкой вставки ВП1-1, например, по техническим условиям оно равно 0,1 с при четырехкратной перегрузке. Для описываемых ниже электронных предохранителей необходимо герконовое реле, которое легко изготовить самостоятельно.

На рис. 1 показана конструкция самодельного герконового реле.

Электронный предохранитель

Стеклянный корпус геркона 1 служит каркасом для обмотки 2 катушки реле. Щечки 3 катушки, представляющие собой текстолитовые шайбы с вырезами для выводов, приклеивают по краям геркона КЭМ-3 эпоксидным клеем 4. Чертеж щечки дан на рис. 2.

Электронный предохранитель

Обмотка катушки содержит 60 витков провода ПЭВ диаметром 0,3 мм (для тока срабатывания 1 А). Сопротивление обмотки настолько мало, что им можно пренебречь.

На рис. 3 представлена схема простого электронного предохранителя, выполненного на таком реле (К2).

Электронный предохранитель

Кроме того, в его состав входит герконовое реле заводского изготовления РЭС55А (К1). В нормальном режиме ток нагрузки проходит по цепи: входная клемма ("+" источника питания), замкнутые контакты кнопки SB1, обмотка реле К2, нормально-замкнутые контакты К1.1 реле К1, нормально-замкнутые контакты К2.1 реле К2. При возникновении токовой перегрузки резко возрастает ток через обмотку реле К2, что вызывает срабатывание его контактов К2.1, которые размыкают цепь тока. К реле К1 подводится почти все напряжение питания, реле срабатывает и размыкает цепь обмотки реле К2 контактами К1.1. Таким образом, разрывается цепь тока перегрузки, и через аварийную нагрузку протекает ток, ограниченный параллельным соединением сопротивлений обмотки реле К1 и цепи индикации, состоящей из светодиода HL1 и резистора R1. Свечение светодиода HL1 говорит об отключении предохранителя. Для запуска предохранителя необходимо кратковременно нажать на кнопку SB1.

Ток срабатывания предохранителя выбирают не более 1 А исходя из максимально допустимого тока для герконов КЭМ-3. Чертеж печатной платы предохранителя показан на рис. 4.

Электронный предохранитель

На рис. 5 представлена схема еще одного варианта электронного предохранителя.

Электронный предохранитель

В его состав, кроме герконового реле К1, выполненного в соответствии с рис. 1, входит тринистор VS1. Устройство запускается кратковременным нажатием кнопки SB1. При этом открывается тринистор VS1 и по цепи: плюс источника питания, тринистор VS1, обмотка реле К1, нормально замкнутые контакты К1.1, нагрузка — протекает ток. При уменьшении сопротивления нагрузки, т. е. при возникновении токовой перегрузки или короткого замыкания, увеличивается ток через обмотку реле К1, контакты К1.1 которого размыкаются, размыкая цепь тринистора VS1. Тринистор VS1 закрывается, отключая тем самым источник питания от нагрузки. При этом загорается светодиод HL1, свидетельствуя об отключении предохранителя. Для его повторного запуска необходимо кратковременно нажать кнопку SB1. Падение напряжения на предохранителе определяется в основном падением напряжения на тринисторе VS1 (около 1,5 В при токе 1 А). Чертеж печатной платы предохранителя дан на рис. 6.

Электронный предохранитель

В таблице указано число витков обмотки самодельного герконового реле для разного тока срабатывания предохранителей, выполненных по схемам рис. 3 и 5.

Электронный предохранитель

Провод обмотки во всех случаях выбран диаметром 0,3 мм.

На рис. 7 представлена схема третьего варианта электронного предохранителя, содержащего тринистор VS1 и два герконовых реле К1, К2 типа РЭС55А.

Электронный предохранитель

В качестве порогового элемента используется одно из реле — К2 (паспорт РС4.569.610П2). Оно имеет напряжение срабатывания 1,46 В [2] и подключено своей обмоткой параллельно к последовательно соединенным тринистору VS1 и резистору R3, падение напряжения на которых является измеряемой величиной. Для тока нагрузки 1 А (ток предохранителя) сопротивление резистора R3 равно 0,2 Ом. Увеличивая сопротивление резистора R3, можно изменять (в сторону уменьшения) ток срабатывания предохранителя. Напряжение срабатывания реле К1 (РЭС55А паспорт РС4.569.602П2) равно 7,3 В.

Для приведения предохранителя в рабочее состояние необходимо кратковременно нажать на сдвоенную кнопку SB1. При этом включается тринистор VS1 и обесточиваются реле К1 и К2. Ток от плюса источника питания проходит по цепи: тринистор VS1, резистор R3, нормально-замкнутые контакты К2.1, нагрузка. Этот ток увеличивается при перегрузке или коротком замыкании. Соответственно увеличивается и падение напряжения на предохранителе. Когда оно достигнет порогового значения, срабатывает реле К2, контакты К2.1 которого размыкаются, отключая нагрузку от источника питания. При этом к предохранителю прикладывается напряжение, почти равное напряжению источника питания. Реле К1 срабатывает, его контакты К1.1 размыкаются, реле К2 обесточивается, его контакты К2.1 замыкаются, но ток по ним не проходит, так как вследствие их предыдущего размыкания закрыт тринистор VS1. Загорается светодиодный индикатор HL1. Реле К1 необходимо для того, чтобы отключить реле К2, к которому при размыкании его контактов К2.1 прикладывается напряжение, значительно превышающее номинальное напряжение этого реле. Благодаря наличию реле К1 время приложения этого напряжения к обмотке реле К2 равно времени включения реле К1 — примерно 1 мс. После срабатывания предохранителя от источника к нагрузке будет протекать незначительный ток через сопротивление параллельно соединенных обмотки реле К1 и цепи: резистор R1, светодиод HL1. После устранения перегрузки необходимо кратковременно нажать на кнопку SB1 для приведения предохранителя в рабочее состояние.

Чертеж печатной платы этого устройства показан на рис. 8.

Электронный предохранитель

В двух последних устройствах (см. рис. 5 и 7) тринистор установлен на кронштейне, чертеж которого приведен на рис. 9.

Электронный предохранитель

Все описанные электронные предохранители испытаны при напряжении источника питания 12 В. Это, однако, не исключает возможности их использования и при другом напряжении.

ЛИТЕРАТУРА
1. Коммутационные устройства радиоэлектронной аппаратуры. Под редакцией Рыбина Г. Я. — М. Радио и связь, 1985.
2. Терещук Р. М. и др. Справочник радиолюбителя. — Киев: Наукова думка, 1982. Радио №12 2005

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *