Тиристорный светодиод

Тиристор – принцип работы, устройство и схема управления

Перед тем как разбираться с темой «тиристор – принцип работы», необходимо понять, что собой представляет этот небольшой прибор. По сути, это силовой ключ, только он всегда находится в открытом состоянии. Поэтому его часто называют не полностью управляемый ключ.

Необходимо отметить, что по своему устройству тиристор напоминает обыкновенный транзистор или диод. Правда, есть и существенные отличия. К примеру, диод – это полупроводниковый двухслойный элемент на кремневой основе (PN), транзистор – трехслойный (PNP или NPN), тиристор – четырехслойный (PNPN). То есть, у него три перехода p-n. Именно поэтому диодные выпрямители перед тиристорными являются менее эффективными. Это хорошо видно на схеме управления тиристорами.

Где применяются тиристоры

Область применения тиристоров обширна. К примеру, из них можно собрать инвертор для сварки или зарядное автомобильное устройство. Некоторые умельцы своими руками собирают даже генераторы. Самое важное, что тиристоры могут через себя пропускать токи и высокочастотные, и низкочастотные. Поэтому, собрав мост из этих приборов, можно изготовить трансформатор и для сварочного аппарата.

Тиристорный светодиод Cхема управления тиристором

Конструкция и принцип действия

Состоит тиристорный ключ из трех частей:

Последний состоит из трех переходов p-n. При этом переключение переходов производится с очень большой скоростью. Вообще, принцип работы тиристора можно объяснить лучше, если рассмотреть схему связки двух транзисторов, связанных параллельно, как выключатели комплементарно регенеративного действия.

Итак, самая простейшая схема двух транзисторов, совмещенных так, чтобы при пуске ток коллектора поступал на NPN второго прибора через каналы NPN первого. А в это же время ток проходит обратный путь через первый транзистор на второй. По сути, получается достаточно простая связка, где база-эмиттер одного из транзисторов, в нашем случае второго, получает ток от коллектора-эмиттера другого прибора, то есть, первого.

Цепь постоянного тока

В цепи постоянного тока тиристор работает по принципу подачи импульса положительной полярности, конечно, относительно катода. На длительность перехода из одного состояния в другое оказывает большое воздействие ряд характеристик. А именно:

  • Вид нагрузки (индуктивный, активный и прочее).
  • Скорость нарастания импульса и его амплитуда, имеется в виду ток нагрузки.
  • Величина самой токовой нагрузки.
  • Напряжение в цепи.
  • Температура самого прибора.

Тиристорный светодиод

Здесь самое важное, чтобы в сети, где установлен данный прибор, не произошло резкое возрастание напряжения. В этом случае может произойти самопроизвольное включение тиристора, а сигнал управления будет в это время отсутствовать.

Цепь переменного тока

В этой сети тиристорный ключ работает немного по-другому. Этот прибор дает возможность проводить несколько видов операций. К примеру:

  • Включение и отключение цепи, в которое действует активная или активно-реактивная нагрузки.
  • Можно изменять значение действующей нагрузки и ее средней величины за счет возможности изменять (регулировать) подачу самого сигнала управления.

Тиристорный светодиод Тиристор в цепи переменного тока.

Но имейте в виду, что тиристорный ключ может пропускать сигнал только в одном направлении. Поэтому сами тиристоры устанавливаются в цепь, так сказать, во встречно-параллельном включении.

Управление тиристорами

В силовых электронных аппаратах чаще всего используется или фазное, или широтно-импульсное управление тиристором.

Тиристорный светодиод

В первом случае регулировать токовую нагрузку можно за счет изменения углов или α, или θ. Это относится к принудительной нагрузке. Искусственную нагрузку можно регулировать только с помощью управляемого тиристора, который также называется запираемый.

При ШИМ (широтно-импульсной модуляции) во время Тоткр сигнал подается, а, значит, сам прибор находится в открытом состоянии, то есть, ток подается с напряжением Uн. В период времени Тзакр сигнал отсутствует, а сам прибор находится непроводящем состоянии.

Тиристорные светодиоды

Обычно тиристор и светодиод в одном светильнике не устанавливаются. Его место заменяет диод, который работает и на включение, и на отключение, как обычный ключ. Это связано с разными причинами, где основная – это конструкция и принцип действия самого прибора, который всегда находится в открытом состоянии. В настоящее время ученые изобрели так называемый тиристорный светодиод.

Во-первых, тиристорный светодиод в своем составе кроме кремния имеет: галлий, алюминий, индий, мышьяк и сурьму. Во-вторых, спектр излучения при n-переходах между материалами создает волну длиною 1,95 мкм. А это достаточно большая оптическая мощность, если ее сравнивать с диодным элементом, который производит световые волны в том же диапазоне.

Разбираемся как проверить тиристор мультиметром

  • Тиристорный светодиод

    Частотный регулятор для асинхронного двигателя – устройство и принцип работы

  • Тиристорный светодиод

    Способы, как проверить симистор

    *****

    Светодиодное освещение решает проблемы энергосбережения во всем мире

    Светодиоды решат проблему энергосбережения, на которой сосредоточен весь мир. Их открыли и применили в качестве индикаторов много лет назад, но сверхъяркие светодиоды были открыты сравнительно недавно и заменили классические источники искусственного света. Они позволили создать энергоэффективное освещение, потребляемая мощность которого в разы меньше мощностей ламп накаливания и люминесцентных ламп.

    Что такое светодиод, в чем его главные преимущества?

    Полупроводниковый прибор, который излучает свет при прохождении сквозь него тока - это светоизлучающий диод. В качестве полупроводника применяются разные материалы: алмаз, селенид кремния, карбид кремния, галлия фосфид, селенид цинка. Список насчитывает более 30 наименований. От химического состава кристалла зависит оттенок света, который он излучает. Мощные светодиоды, дающие очень яркий свет - это карбид кремния. Чем яркие светодиоды привлекают потребителя?

    • Долговечность использования.
    • Низкая потребляемая мощность (до 25 Вт).
    • Отсутствие потерь излучаемого потока.
    • Механическая прочность.
    • Экологическая безопасность для природы и человека.

    Несколько слов про тиристорный светодиод

    Тиристорный светодиод - это тоже полупроводник. Он имеет катод и анод, но в силу своих конструктивных особенностей мигать и светиться не может. Он играет роль электронного ключа, который следит за мощностью тока. Тиристор и светодиод могут использоваться в одной микросхеме, где тиристор осуществляет управление током, а светодиод обеспечивает свечение индикатора. Это можно использовать, например, в любой радиоэлектронной аппаратуре.

    Как безопасно подключить светодиод?

    Напрямую в электрическую сеть его подключать запрещается, иначе большая мощность приведет к перегоранию цепи. Защитой здесь выступает ограничительный резистор для светодиода. Он подключается следующим образом:

    1. Последовательное соединение. Резистор подсоединяется после всех подключенных светодиодов. Рекомендуется именно параллельное подключение для любой цепи, как самое энергоэкономное.

    2. Параллельное соединение. В таком случае для каждого светодиода следует применить отдельный резистор, но это увеличивает общее потребление энергии.

    Новый вид освещения позволяет заменить все лампы накаливания и люминесцентные, применяемые в производстве, быту, офисах, уличном освещении, электронных приборах и пр. Он обладает надежностью и виброустойчивостью, потребление тока снижается на 70%. Это позволит экономить огромные энергомощности в масштабах не только отдельного города, страны, а также и мира в целом.

    Информация предоставлена корреспондентом сайта Светошок - http://svetoshok.ru/.

    *****

    Что такое диод, стабилитрон, варикап, тиристор, светодиод - их типы и применение

    Полупроводниковые приборы применялись в радиотехнике еще до изобретения электронных ламп. Изобретатель радио А. С. Попов использовал для обнаружения электромагнитных волн вначале когерер (стеклянную трубку с металличеокими опилками), а затем контакт стальной иглы с угольным электродом.

    Это был первый полупроводниковый диод — детектор. Позже были созданы детекторы с использованием естественных и искусственных кристаллических полупроводников (галена, цинкита, халькопирита и т. д.).

    Такой детектор состоял из кристалла полупроводника, впаянного в чашечку-держатель, и стальной или вольфрамовой пружинки с заостренным концом (рис. 1). Положение острия на кристалле находили опытным путем, добиваясь наибольшей громкости передачи-радиостанции.

    Тиристорный светодиод

    Рис. 1. Полупроводниковый диод — детектор.

    В 1922 г. сотрудник Нижегородской радиолаборатории О. В. Лосев обнаружил замечательное явление: кристаллический детектор, оказывается, может генерировать и усиливать электрические колебания.

    Это было настоящей сенсацией, но недостаточность научных познаний, отсутствие нужного экспериментального оборудования не позволили в то время глубоко исследовать суть процессов, происходящих в полупроводнике, и создать полупроводниковые приборы, способные конкурировать с электронной лампой.

    Полупроводниковый диод

    Полупроводниковые диоды обозначают символом, сохранившимся в общих чертах со времен первых радиоприемников (рис. 2,6).

    Тиристорный светодиод

    Рис. 2. Обозначение и структура полупроводникового диода.

    Вершина треугольника в этом символе указывает направление наибольшей проводимости (треугольник символизирует анод диода, а короткая черточка, перпендикулярная линиям-выводам,— его катод).

    Этим же символом обозначают полупроводниковые выпрямители, состоящие, например, из нескольких последовательно, параллельно или смешанно соединенных диодов (выпрямительные столбы и т. п.).

    Диодные мосты

    Для питания радиоаппаратуры часто используют мостовые выпрямители. Начертание тажой схемы соединения диодов (квадрат, стороны которого образованы символами диодов) давно уже стало общепринятым, поэтому для обозначения таких выпрямителей стали иополикшать упрощенный символ — квадрат с символом одного диода внутри (рис. 3).

    Тиристорный светодиод

    Рис. 3. Обозначение диодного моста.

    В зависимости от значения выпрямленного напряжения каждое плечо моста может состоять из одного, двух и более диодов. Полярность выпрямленного напряжения на схемах не указивают так как ее однозначно определяет аимвол диода внутри квадрата.

    Мосты конструктивно объединенные в одном корпусе, изображают отдельно показивая принадлежность к одному изделию в позиционном обозначены. Рядом с позиционным обозначением диодов, как и всех других полупроводниковых приборов, как правило, указывают их тип.

    На основе символа диода построены условные обозначения полупроводниковых диодов с особыми свойствами. Для получения нужного символа используют специальные знаки, изВбражаемые либо на самом базовом символе, либо в непосредственной близости от него, а чтобы акцентировать внимание на некоторых из них, базовый символ помещают в круг — условное обозначение корпуса полупроводникового прибора.

    Туннельные диоды

    Знаком, напоминающим прямую скобку, обозначают катод туннельных диодов, (рис. 4,а). Их изготовляют из полупроводниковых материалов с очень большим содержанием примеси, в результате чего полупроводник превращается в полуметалл. Благодаря необычной форме вольт-амперной характеристики (на ней имеется участок отрицательного сопротивления) туннельные диоды используют для усиления и генерирования электрических сигналов и в переключающих устройствах. Важным достоинством этих диодов является то, что они могут работать на очень высоких частотах.

    Тиристорный светодиод

    Рис. 4. Тунельный диод и его обозначение.

    Разновидность туннельных диодов — обращенные диоды, у которых при малом напряжении на р-п переходе проводимость в обратном направлении больше, чем в прямом.

    Используют такие диоды в обратном включении. В условном обозначении обращенного диода черточку-катод изображают с двумя штрихами, касающимися ее своей'серединой (рис. 4,6).

    Стабилитроны

    Прочное место в источниках питания, особенно низковольтных, завоевали полупроводниковые стабилитроны, работающие также на обратной ветви вольт-амперной характеристики.

    Это плоскостные кремниевые диоды, изготовленные по особой технологии. При включении их в обратном направлении и определенном напряжении -на переходе последний «пробивается», и в дальнейшем, несмотря на увеличение тока через- переход напряжение на нем остался почти неизменным.

    Тиристорный светодиод

    Рис. 5. Стабилитрон и его обозначение на схемах.

    Благодари этому свойству стабилитроны широко применяют в качестве самостоятельных стабилизирующих элементов, а также источников образцовых напряжений в стабилизаторах на транзисторах.

    Для получения малых образцовых напряжений стабилитроны включают в прямом направлении, при этом напряжение стабилизации одного стабилитрона равно 0,7. 0,8 В. Такие же результаты получаются при включении в прямом направлении обычных кремниевых диодов.

    Для стабилизации низких напряжений разработаны и широко применяются специальные полупроводниковые диоды — стабисторы. Отличие их от стабилитронов в том, что они работают на прямой ветви вольт-амперной характеристики, т. е. при включении в прямом (проводящем) направлении.

    Чтобы показать на схеме стабилитрон, черточку-катод базового символа дополняют коротким штрихом, направленным в сторону символа анода (рис. 5,а). Следует отметить, что расположение штриха относительно символа анода должно быть неизменным независимо от положения условного обозначения стабилитрона на схеме.

    Это в полной мере относится и к символу двух-анодного (двустороннего) стабилитрона (рис. 5,6), который можно включать в электрическую цепь в любом направлении (по сути, это два встречно включенных одинаковых стабилитрона).

    Электронно-дырочный переход, к которому приложено обратное напряжение, обладает свойствами конденсатора. При этом роль диэлектрика играет сам р-п переход, в котором свободных носителей зарядов мало, а роль обкладок — прилежащие слои полупроводника с электрическими зарядами разного -знака — электронами и дырками. Изменяя напряжение, приложенное к р-п переходу, можно изменять его толщину, а следовательно, и емкость между слоями полупроводника.

    Тиристорный светодиод

    Рис. 6. Варикапы и их обозначение на принципиальных схемах.

    Это явление использовано в специальных полупроводниковых приборах — варикапах [от английских слов vari (able) — переменный и cap (acitor) — конденсатор]. Варикапы широко применяют для настройки колебательных контуров, в устройствах автоматической подстройки частоты, а также в качестве частотных модуляторов в различных генераторах.

    Условное графическое обозначение варикапа (см. рис. 6,а), наглядно отражает их суть: дне параллельные черточки воспринимаются как символ конденсаторе. Кик и конденсаторы переменной емкости, варикапы часто изготовляют и виде блоков (их называют матрицами) с общим катодом и раздельными анодами. Для примера на рис. 6,6 показано обозначение матрицы из двух варикапов, а на рис. 6,в — из трех.

    На основе базового символа диода построены и условные обозначения тиристоров (от греческого thyra — дверь и английского (resi)stor — резистор). Это диоды, представляющие собой чередующиеся слои кремния с электропроводностью типов р и п. Таких слоев в тиристоре четыре, т. е. он имеет три р-п перехода (структура р-п-р-п).

    Тиристоры нашли широкое применение в различных регуляторах переменного напряжения, в релаксационных генераторах, коммутирующих устройствах и т. д.

    Тиристорный светодиод

    Рис. 7. Тиристор и его обозначение на принципиальных схемах.

    Тиристоры с выводами только от крайних слоев структуры называют динисторимн и обозначают символом диода, перечеркнутым отрезком линии, паралельной черточке-катоду (рис 7,а). Такой же прием использован и при построении обозначения симметричного динистора (рис. 7, б), проводящего ток (после включения) в обоих направлениях.

    Тиристоры с дополнительным (третьим) выводом (от одного из внутрених слоен структуры) называют тринисторами. Управление по катоду в обозначении этих приборов показывают ломаной линией, присоединенной к символу катода (рис. 7,в), по аноду — линией, продолжающей одну из сторон треугольника, символизирующего анод (рис. 7,г).

    Условное обозначение симметричного (двунаправленного) трииистора получают из символа симметричного динистора добавлением третьего вывода (рис. 7,(5).

    Основной частью фотодиода является переход, работающий при обратном смещении. В его корпусе имеется окошко, через которое освещается кристалл полупроводника. В отсутствие света ток через р-п переход очень мал — не превышает обратного тока обычного диода.

    Тиристорный светодиод

    Рис. 8. Фотодиоды и их изображение на схемах.

    При освещении кристалла обратное сопротивление перехода резко падает, ток через него растет. Чтобы показать такой полупроводниковый диод на схеме, базовый символ диода помещают в кружок, а рядом с ним (слева сверху, независимо от положения символа) изображают знак фотоэлектрического эффекта — две наклонные параллельные стрелки, направленные в сторону символа (рис. 8,а).

    Подобным образом нетрудно построить и условнбе обозначение любого другого полупроводникового прибора, изменяющего свои свойства под действием оптического излучения. В качестве примера на рис. 8,6 показано обозначение фотодинистора.

    Светодиоды и светодиодные индикаторы

    Полупроводниковые диоды, излучающие свет при прохождении тока через р-n переход, называют светодио-дами. Включают такие диоды в прямом направлении. Условное графическое обозначение светодиода похоже на символ фотодиода и отличается от него тем, что стрелки, обозначающие оптическое излучение, помещены справа от кружка и направлены в противоположную сторону (рис. 9).

    Тиристорный светодиод

    Рис. 9. Светодиоды и их изображение на схемах.

    Для отображения цифр, букв и других знаков в низковольтной аппаратуре часто применяют светодиодные знаковые индикаторы, представляющие собой наборы светоизлучающих кристаллов, расположенных определенным образом и залитых прозрачной пластмассой.

    Условных обозначений для подобных изделий стандарты ЕСКД не предусматривают, но на практике часто используют символы, подобные показанному на рис. 10 (символ семисегментного индикатора для отображения цифр и запятой).

    Тиристорный светодиод

    Рис. 10. Обозначение светодиодных сегментных индикаторов.

    Как видно, такое графическое обозначение наглядно отражает реальное расположение светоизлучающих 'элементов (сегментов) в индикаторе, хотя и не лишено недостатка: оно не несет информации о полярности включения выводов индикатора в электрическую цепь (индикаторы выпускают как с общим для всех сегментов выводом анода, так и с общим выводом катода).

    Однако особых затруднений это обычно не вызывает, поскольку подключение общего вывода индикатора (как, впрочем, и микросхем) оговаривают на схеме.

    Светоизлучающие кристаллы широко используют в оптронах — специальных приборах, применяемых для связи отдельных частей электронных устройств в тех случаях, когда необходима их гальваническая развязка. На схемах оптроны изображают, как показано на рис. 11.

    Оптическую связь излучателя света (светодиода) с фотоприемником показывают двумя параллельными стрелками, перпендикулярными линиям-выводам оптрона. Фотоприемником в оптроне могут быть не только фотодиод (рис. 11,а), но и фоторезистор (рис. 11,6), фотодинистор (рис. 11,в) и т. д. Взаимная ориентация символов излучателя и фотоприемника не регламентируется.

    Тиристорный светодиод

    Рис. 11. Обозначение оптопар (оптронов).

    При необходимости составные части оптрона допускается изображать раздельно, но в этом случае знак оптической связи следует заменить знаками оптического излучения и фотоэффекта, а принадлежность частей к оптрону показать в позиционном обозначении (рис. 11,г).

    Литература: В.В. Фролов, Язык радиосхем, Москва, 1998.

    *****

    Тиристорный светодиод. Характеристики и принцип работы

    Тиристорный светодиод - это отличная альтернатива деталям, существующим на сегодняшний день, которые применяются при изготовлении осветительных приборов. Преимущества LED: долговечность в процессе эксплуатации, низкое потребление электроэнергии и маленькие габаритные размеры.

    Принцип работы светодиода

    Причиной свечения является процесс рекомбинации положительно заряженных дырок и отрицательно заряженных частиц в зоне p-h-перехода. Эта зона является контактом двух материалов (полупроводников) с разной способностью токопроводимости. Для создания яркого свечения используется многослойная конструкция кристалла светодиода. Яркость его может быть увеличена путем подачи сильного напряжения, но при большом значении силы тока диод может выйти из строя. Яркость LED можно регулировать и в сторону уменьшения. Конструкция его очень проста, но в то же время большинство изготовителей не раскрывает секрет производства своей продукции.

    Тиристорный светодиодНа сегодняшний день современный тиристотный светодиод очень продуктивен, ведь его КПД колеблется от 60 до 70%. Если сравнить лампы накаливания (коэффициент полезного действия которых всего лишь 5–7%) с LED, то последние лучше обычных в десять раз. Срок заявленной эксплуатации осветительных приборов, которые используют тиристорный светодиод, составляет десять лет непрерывного свечения. Экономия электроэнергии при использовании LED, по сравнению с ЛДС, составляет приблизительно 50%, а по сравнению с лампами накаливания - 85%.

    Светоотдача современных диодов может конкурировать с МГЛ и ДНаТ (а также ДНаЗ). Показатель этот равняется 150 лм/Вт. Срок окупаемости светодиодных ламп - 2-3 года. Впоследствии оставшиеся десять лет вы экономите 85% электроэнергии, потребляемой каждый месяц.

    Тиристорный светодиод

    LED, характеристики которых не уступают аналогам, имеют такие преимущества:

    • при изготовлении светодиодов не используется стекло, поэтому осветительные лампы такого типа имеют высокие показатели прочности, виброустойчивости и надежности;
    • LED устойчивы к перепадам напряжения и потребляют всего 0.4-0.6 А;
    • тиристорный светодиод эффективно работает в экстремальных условиях, даже при очень низкой температуре.

    Чтобы запустить LED, необходим довольно дорогостоящий диодный мост, отчего цена на осветительные приборы ранее была довольно завышена. Производители решили эту проблему. Электрическая схема была изменена, и вместо тиристорных диммеров были применены симисторные. Получился прибор, состоящий из двух тиристоров, подключенных параллельно-встречным путем. За счет этой инновации необходимость в использовании диодного моста сегодня отсутствует. Это решение привело к удешевлению продукции и значительно повысило класс безопасности и качества товаров на основе тиристоров.

    Тиристорный светодиодТиристорный светодиод широко применяется в производстве осветительных приборов. Его продолжительный срок службы, надежность и практичность радуют потребителей, ведь люстры и другие приборы с LED-подсветкой не только экономны, а еще и необычайно красиво выглядят.

    Тиристорный светодиод

    9 знаменитых женщин, которые влюблялись в женщин Проявление интереса не к противоположному полу не является чем-то необычным. Вы вряд ли сможете удивить или потрясти кого-то, если признаетесь в том.

    Тиристорный светодиод

    10 загадочных фотографий, которые шокируют Задолго до появления Интернета и мастеров "Фотошопа" подавляющее большинство сделанных фото были подлинными. Иногда на снимки попадали поистине неверо.

    Тиристорный светодиод

    11 странных признаков, указывающих, что вы хороши в постели Вам тоже хочется верить в то, что вы доставляете своему романтическому партнеру удовольствие в постели? По крайней мере, вы не хотите краснеть и извин.

    Тиристорный светодиод

    Неожиданно: мужья хотят, чтобы их жены делали чаще эти 17 вещей Если вы хотите, чтобы ваши отношения стали счастливее, вам стоит почаще делать вещи из этого простого списка.

    Тиристорный светодиод

    Как выглядеть моложе: лучшие стрижки для тех, кому за 30, 40, 50, 60 Девушки в 20 лет не волнуются о форме и длине прически. Кажется, молодость создана для экспериментов над внешностью и дерзких локонов. Однако уже посл.

    Тиристорный светодиод

    Наперекор всем стереотипам: девушка с редким генетическим расстройством покоряет мир моды Эту девушку зовут Мелани Гайдос, и она ворвалась в мир моды стремительно, эпатируя, воодушевляя и разрушая глупые стереотипы.

    *****

    Тиристорный светодиод

    Тиристоры — это разновидность полупроводниковых приборов. Они предназначены для регулирования и коммутации больших токов. Тиристор позволяет коммутировать электрическую цепь при подаче на него управляющего сигнала. Это делает его похожим на транзистор.

    Как правило, тиристор имеет три вывода, один из которых управляющий, а два других образуют путь для протекания тока. Как мы знаем, транзистор открывается пропорционально величине управляющего тока. Чем он больше, тем больше открывается транзистор, и наоборот. А у тиристора все устроено иначе. Он открывается полностью, скачкообразно. И что самое интересное, не закрывается даже при отсутствии управляющего сигнала.

    Принцип действия

    Рассмотрим работу тиристора по следующей простой схеме.

    Тиристорный светодиод

    К аноду тиристора подключается лампочка или светодиод, а к ней подсоединяется плюсовой вывод источника питания через выключатель К2. Катод тиристора подключен к минусу питания. После включения цепи на тиристор подается напряжение, однако светодиод не горит.

    Тиристорный светодиод

    Если нажать на кнопку К1, ток через резистор поступит на управляющий электрод, и светодиод начал светиться. Часто на схемах его обозначают буквой «G», что обозначает gate, или по-русски затвор (управляющий вывод).

    Резистор ограничивает ток управляющего вывода. Минимальный ток срабатывания данного рассматриваемого тиристора составляет 1 мА, а максимально допустимый ток 15 мА. С учетом этого в нашей схеме подобран резистор сопротивлением 1 кОм.

    Если снова нажать на кнопку К1, то это не повлияет на тиристор, и ничего не произойдет. Чтобы перевести тиристор в закрытое состояние, нужно отключить питание выключателем К2. Если же снова подать питание, то тиристор вернется в исходное состояние.

    Этот полупроводниковый прибор, по сути, представляет собой электронный ключ с фиксацией. Переход в закрытое состояние происходит и тогда, когда напряжение питания на аноде уменьшается до определенного минимума, примерно 0,7 вольта.

    Особенности устройства

    Фиксация включенного состояния происходит благодаря особенности внутреннего устройства тиристора. Примерная схема выглядит таким образом:

    Тиристорный светодиод

    Обычно он представляется в виде двух транзисторов разной структуры, связанных между собой. Опытным путем можно проверить, как работают транзисторы, подключенные по такой схеме. Однако, имеются отличия в вольтамперной характеристике. И еще нужно учитывать, что приборы изначально спроектированы так, чтобы выдерживать большие токи и напряжения. На корпусе большинства таких приборов имеется металлический отвод, на который можно закрепить радиатор для рассеивания тепловой энергии.

    Тиристорный светодиод

    Тиристоры выполняются в различных корпусах. Маломощные приборы не имеют теплового отвода. Распространенные отечественные тиристоры выглядят следующим образом. Они имеют массивный металлический корпус и выдерживают большие токи.

    Тиристорный светодиод

    Основные параметры тиристоров

    • Максимально допустимый прямой ток. Это максимальное значение тока открытого тиристора. У мощных приборов оно достигает сотен ампер.

    • Максимально допустимый обратный ток.
    • Прямое напряжение. Это падение напряжения при максимальном токе.
    • Обратное напряжение. Это максимально допустимое напряжение на тиристоре в закрытом состоянии, при котором тиристор может работать без нарушения его работоспособности.
    • Напряжение включения. Это минимальное напряжение, приложенное к аноду. Здесь имеется ввиду минимальное напряжение, при котором вообще возможна работа тиристора.
    • Минимальный ток управляющего электрода. Он необходим для включения тиристора.
    • Максимально допустимый ток управления.
    • Максимально допустимая рассеиваемая мощность.

    Динамический параметр

    Время перехода тиристора из закрытого состояния в открытое при поступлении сигнала.

    Виды тиристоров

    Различают несколько разновидностей тиристоров. Рассмотрим их классификацию.

    Тиристорный светодиод

    По способу управления разделяют на:

    • Диодные тиристоры, или по-другому динисторы. Они открываются импульсом высокого напряжения, которое подается на катод и анод.
    • Триодные тиристоры, или тринисторы. Они открываются током управления электродом.

    Триодные виды тиристоров в свою очередь разделяются:

    • Управление катодом – напряжение, образующее ток управления, поступает на электрод управления и катод.
    • Управление анодом – управляющее напряжение подходит на электрод и анод.

    Запирание тиристора производится:

    • Уменьшением анодного тока – катод меньше тока удержания.
    • Подачей напряжения запирания на электрод управления.

    По обратной проводимости тиристоры делятся:

    • Обратно-проводящие – имеют малое обратное напряжение.
    • Обратно-непроводящие – обратное напряжение равно наибольшему прямому напряжению в закрытом виде.
    • С ненормируемым обратным значением напряжения – изготовители не определяют значение этой величины. Такие приборы применяются в местах, где обратное напряжение исключено.
    • Симисторы – пропускает токи в двух направлениях.

    Используя симисторы, нужно знать, что они действуют условно симметрично. Основная часть симисторов открывается, когда на электрод управления поступает положительное напряжение по сравнению с катодом, а на аноде может быть любая полярность. Но если на анод приходит отрицательное напряжение, а на электрод управления положительное, то симисторы не открываются, и могут выйти из строя.

    По быстродействию разделяют по времени отпирания (включения) и времени запирания (отключения).

    Разделение тиристоров по мощности

    При действии тиристора в режиме ключа наибольшая мощность коммутируемой нагрузки определяется напряжением на тиристоре в открытом виде при наибольшем токе и наибольшей рассеиваемой мощности.

    Действующая величина тока на нагрузку не должна быть выше наибольшей рассеиваемой мощности, разделенной на напряжение в открытом виде.

    Простая сигнализация на основе тиристора

    На основе тиристора можно сделать простую сигнализацию, которая будет реагировать на свет, издавая звук с помощью пьезоизлучателя. На управляющий вывод тиристора подается ток через фоторезистор и подстроечный резистор. Свет, попадая на фоторезистор, уменьшает его сопротивление. И на управляющий вывод тиристора начинает поступать отпирающий ток, достаточный для его открывания. После этого включается пищалка.

    Подстроечный резистор предназначен для того, чтобы настроить чувствительность устройства, то есть, порог срабатывания при облучении светом. Самое интересное, что даже при отсутствии света тиристор продолжает оставаться в открытом состоянии, и сигнализирование не прекращается.

    Тиристорный светодиод

    Если напротив светочувствительного элемента установить световой луч так, чтобы он светил немного ниже окошечка, то получится простейший датчик дыма. Дым, попадая между источником и приемником света, будет рассеивать свет, что вызовет запуск сигнализации. Для этого устройства обязательно нужен корпус, для того, чтобы на приемник света не поступал свет от солнца или искусственных источников света.

    Открыть тиристор можно и другим способом. Для этого достаточно кратковременно подать небольшое напряжение между управляющим выводом и катодом.

    Регулятор мощности на тиристоре

    Теперь рассмотрим использование тиристора по прямому назначению. Рассмотрим схему простого тиристорного регулятора мощности, который будет работать от сети переменного тока напряжением 220 вольт. Схема простая и содержит всего пять деталей.

    Тиристорный светодиод

    • Полупроводниковый диод VD.
    • Переменный резистор R1.
    • Постоянный резистор R2.
    • Конденсатор С.
    • Тиристор VS.

    Их рекомендованные номинальные значения показаны на схеме. В качестве диода можно использовать КД209, тиристор КУ103В или мощнее. Резисторы желательно использовать мощностью не менее 2 ватт, конденсатор электролитический на напряжение не менее 50 вольт.

    Эта схема регулирует лишь один полупериод сетевого напряжения. Если представить, что мы из схемы убрали все элементы, кроме диода, то он будет пропускать только полуволну переменного тока, и на нагрузку, к примеру, на паяльник или лампу накаливания поступит лишь половина мощности.

    Тиристор позволяет пропускать дополнительные, условно говоря, кусочки полупериода, срезанного диодом. При изменении положения переменного резистора R1 напряжение на выходе будет меняться.

    Тиристорный светодиод

    К положительному выводу конденсатора включен управляющий вывод тиристора. Когда напряжение на конденсаторе возрастает до напряжения включения тиристора, он открывается и пропускает определенную часть положительного полупериода. Переменный резистор будет определять скорость зарядки конденсатора. А чем быстрее он зарядится, тем раньше откроется тиристор, и успеет до смены полярности пропустить часть положительного полупериода.

    На конденсатор отрицательная полуволна не поступает, и напряжение на нем одной полярности, поэтому не страшно, что он имеет полярность. Схема позволяет изменять мощность от 50 до 100%. Для паяльника это в самый раз подходит.

    Тиристор пропускает ток в одном направлении от анода к катоду. Но существуют разновидности, которые пропускают ток в обоих направлениях. Они называются симметричными тиристорами или симисторами. Они используются для управления нагрузкой в цепях переменного тока. Существует большое количество схем регуляторов мощности на их основе.

    Похожие темы:
  • Добавить комментарий

    Ваш e-mail не будет опубликован. Обязательные поля помечены *