Таблица сопротивлений

Удельное сопротивление металлов. Таблица

Удельное сопротивление металлов является мерой их свойства противодействовать прохождению электрического тока. Эта величина выражается в Ом-метр (Ом⋅м). Символ, обозначающий удельное сопротивление, является греческая буква ρ (ро). Высокое удельное сопротивление означает, что материал плохо проводит электрический заряд.

Удельное сопротивление

Удельное электрическое сопротивление определяется как отношение между напряженностью электрического поля внутри металла к плотности тока в нем:
Таблица сопротивлений

где:
ρ — удельное сопротивление металла (Ом⋅м),
Е — напряженность электрического поля (В/м),
J — величина плотности электрического тока в металле (А/м2)

Если напряженность электрического поля (Е) в металле очень большая, а плотность тока (J) очень маленькая, это означает, что металл имеет высокое удельное сопротивление.

Обратной величиной удельного сопротивления является удельная электропроводность, указывающая, насколько хорошо материал проводит электрический ток:

Таблица сопротивлений

σ — проводимость материала, выраженная в сименс на метр (См/м).

Электрическое сопротивление

Электрическое сопротивление, одно из составляющих закона Ома. выражается в омах (Ом). Следует заметить, что электрическое сопротивление и удельное сопротивление — это не одно и то же. Удельное сопротивление является свойством материала, в то время как электрическое сопротивление — это свойство объекта.

Электрическое сопротивление резистора определяется сочетанием формы и удельным сопротивлением материала, из которого он сделан.

Например, проволочный резистор. изготовленный из длинной и тонкой проволоки имеет большее сопротивление, нежели резистор, сделанный из короткой и толстой проволоки того же металла.

В тоже время проволочный резистор, изготовленный из материала с высоким удельным сопротивлением, обладает большим электрическим сопротивлением, чем резистор, сделанный из материала с низким удельным сопротивлением. И все это не смотря на то, что оба резистора сделаны из проволоки одинаковой длины и диаметра.

В качестве наглядности можно провести аналогию с гидравлической системой, где вода прокачивается через трубы.

  • Чем длиннее и тоньше труба, тем больше будет оказано сопротивление воде.
  • Труба, заполненная песком, будет больше оказывать сопротивление воде, нежели труба без песка

Таблица сопротивлений

Сопротивление провода

Величина сопротивления провода зависит от трех параметров: удельного сопротивления металла, длины и диаметра самого провода. Формула для расчета сопротивления провода:

Таблица сопротивлений
где:
R — сопротивление провода (Ом)
ρ — удельное сопротивление металла (Ом.m)
L — длина провода (м)
А — площадь поперечного сечения провода (м2)

Таблица сопротивлений

В качестве примера рассмотрим проволочный резистор из нихрома с удельным сопротивлением 1.10×10-6 Ом.м. Проволока имеет длину 1500 мм и диаметр 0,5 мм. На основе этих трех параметров рассчитаем сопротивление провода из нихрома:

Нихром и константан часто используют в качестве материала для сопротивлений. Ниже в таблице вы можете посмотреть удельное сопротивление некоторых наиболее часто используемых металлов.

Таблица сопротивлений

Поверхностное сопротивление

Величина поверхностного сопротивления рассчитывается таким же образом, как и сопротивление провода. В данном случае площадь сечения можно представить в виде произведения w и t:

Таблица сопротивлений
Для некоторых материалов, таких как тонкие пленки, соотношение между удельным сопротивлением и толщиной пленки называется поверхностное сопротивление слоя RS:
Таблица сопротивлений
где RS измеряется в омах. При данном расчете толщина пленки должна быть постоянной.

Таблица сопротивлений

Часто производители резисторов для увеличения сопротивления вырезают в пленке дорожки, чтобы увеличить путь для электрического тока.

Свойства резистивных материалов

Удельное сопротивление металла зависит от температуры. Их значения приводится, как правило, для комнатной температуры (20°С). Изменение удельного сопротивления в результате изменения температуры характеризуется температурным коэффициентом.

Например, в термисторах (терморезисторах) это свойство используется для измерения температуры. С другой стороны, в точной электронике, это довольно нежелательный эффект.
Металлопленочные резисторы имеют отличные свойства температурной стабильности. Это достигается не только за счет низкого удельного сопротивления материала, но и за счет механической конструкции самого резистора.

Много различных материалов и сплавов используются в производстве резисторов. Нихром (сплав никеля и хрома), из-за его высокого удельного сопротивления и устойчивости к окислению при высоких температурах, часто используют в качестве материала для изготовления проволочных резисторов. Недостатком его является то, что его невозможно паять. Константан, еще один популярный материал, легко паяется и имеет более низкий температурный коэффициент.

Таблица сопротивлений

*****

2017 г. Справочники - Мобильная версия - Электротехника

Памятка по электротехнике

Закон Ома устанавливает связь между силой тока в проводнике и разностью потенциалов (напряжением) на его концах. Формулировка для участка электрической цепи (проводника), не содержащего источников электродвижущей силы (ЭДС): сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению проводника. Законы Ома для замкнутой неразветвлённой цепи: сила тока прямо пропорциональна электродвижущей силе и обратно пропорциональна полному сопротивлению цепи. Закон Ома справедлив для постоянных и квазистационарных токов. Был открыт немецким физиком Георгом Омом в 1826 году. * Современная энциклопедия

В случае переменного тока, величины, входящие в расчётные формулы – становятся комплексными.

Закон Ома в дифференциальной форме - описывает исключительно электропроводящие свойства материала, вне зависимости от геометрических размеров.

Удельное электрическое сопротивление вещества есть электросопротивление изготовленного из него куба со сторонами, равными единице (1метр), когда ток идёт перпендикулярно двум его противоположным граням, площадью 1 квадратный метр каждая.

Удельное сопротивление зависит от концентрации в проводнике свободных электронов и от расстояния между ионами кристаллической решетки, иначе говоря, от материала проводника.

Размерность удельного электросопротивления в сист. СИ (международная система единиц, англ. - International System of Units) –
Ом·м [Ом*м^2/м] (SI – Ω·m, рус. – Ом-метр, англ. – ohm-meter). Для измерения проводниковых материалов разрешается использовать внесистемную единицу –
Ом·мм2/м (для миллиметрового сечения проводника, длиной 1 м. то есть – миллионную часть Ом-метра).

Физический смысл удельного сопротивления: материал (однородный и изотропный*) имеет удельное электрическое сопротивление один Ом·м, если изготовленный из этого материала куб со стороной 1 метр имеет сопротивление 1 Ом при измерении на противоположных гранях куба.
* Изотропность – идентичность физических свойств во всех направлениях.

Удельное сопротивление характеризует способность вещества проводить электрический ток и не зависит от формы и размеров вещества, но меняется, при отличии его температуры от 20 °C (то есть, от комнатной, при которой определялись табличные значения для справочников).

На практике, в технике чаще применяется единица, в миллион раз меньшая (миллиметровое токоведущее сечение), чем Ом·м:

1 мкОм·м (SI – µΩ·m, рус. – микроом-метр, англ. – microhm-meter) = 1*10^-6 Ом*м
1 мкОм·м = 1 Ом·мм2/м

При этом, удельное сопротивление однородного куска проводника длиной 1 метр и площадью токоведущего сечения 1 квадратный миллиметр – равно 1 Ом·мм2/м, если его сополтивление равно 1 Ом.
Например, величина удельного сопротивления электротехнической меди, примерно, составляет 1,72*10^-8 Ом·м = 0.0172 мкОм·м (определяется при температуре 20 градусов по Цельсию).

В зависимости от удельного сопротивления все вещества делятся на проводники, диэлектрики и полупроводники. Диэлектрики (изоляторы, например - фарфор) имеют очень высокие значения удельного электрического сопротивления, превышающие 10^12 Ом·м, а проводники (к примеру - серебро, медь) – меньше 10^-2 Ом·м ( R = (R1 * (1 + α * (t2–t1))) * L / S =
= 2,62*10 -8 Ом•м * (1 + 0,0042*95) * 100 / (3,14 * 40 2 * 10 -6 ) = 7,3 * 10 -4 Ом
где:
S – площадь сечения в м 2 (с вычетом толщины слоёв изоляции),
L – длина проводника в метрах.

Температурный коэффициент сопротивления х10 -3. 1/градус:
Алюминий – 4,2
Бронза оловянистая твёрдотянутая – 0,6-0,7
Вольфрам – 4,2
Графит – -1,3
Дюраль – 2,2
Константан – 0,003-0,005
Латунь – 1,5
Манганин – 0,03-0,06 (при температуре до 250-300°С)
Медь – 4,3
Нихром – 0,14
Серебро – 4,0
Сталь – 9,0
Цинк – 4,2

Постоянные резисторы и их маркировка

В буквенно-цифровой (кодовой) маркировке резисторов – на их корпус наносится числовое значение электрического сопротивления и буквы, первая из которых обозначает множитель (R или Е – Ом,  K – килоом,  M – мегаом) и, заодно, определяет положение разделительной запятой десятичного знака. Вторая буква означает класс точности, то есть, допускаемое отклонение от указанной величины. Номиналы на мелкие детали – наносят в виде маркировки цветными кольцами, полосками или точками (в зависимости от применяемого стандарта). Каждому цвету соответствует определенная цифра, означающая число Ом, множитель / степень или процент точности. Для быстрого определения номинала резистора по цветовой кодировке, применяются специальные компьютерные программы.
Читать дальше.

Пример расчёта, на основе школьной задачки по физике из программы 9 класса.

Задание: определить (найти в таблице), по известному удельному сопротивлению p = 0.017Ом·мм2/м - какой это материал? Рассчитать диаметр проволоки. Вычислить электрическое сопротивление провода, длиной L = 80 см, сечением S = 0.2 мм2
Решение задачи:
По таблице определяем, что удельное сопротивление, равное 0.017 Ом·мм2/м может быть у меди.

Из формулы S = 3.1416 * (радиус)^2 = 3.142 * ((диаметр)^2)/4
с помощью своего калькулятора, находится диаметр (в миллиметрах) = корень квадратный из (4 * S / 3.14)

Длина провода, в единицах системы СИ (переводим в метры):
80 см = 0.8 м

Находим электр. сопротивление по формуле:
R = (p * L) / S = (0.017 * 0.8) / 0.2 = 0.068 Ом

Ответ: с точностью до второго знака после запятой, R = 0.07 Ом

О р е н б у р г с к и е п л а т к и, п а л а н т и н ы, ш а р ф ы, к а р д и г а н ы, ш а л и

*****

Удельное электрическое сопротивление проводников

В связи с тем, что существует два типа электрических сопротивлений -

омическое сопротивление - электрическое сопротивление постоянному току, определяемое трением, создаваемым движению носителей электрических зарядов в проводящей среде под действием потенциального электрического поля в этой среде (проводнике).

активное сопротивление - электрическое сопротивление переменному току, определяемое трением, создаваемым движению носителей электрических зарядов в проводящей среде под действием потенциального и вихревого электрических полей в проводнике, проводящей среде.

следует различать два следующих основных понятия удельного сопротивления.

Удельное электрическое сопротивление постоянному току - это электрическое сопротивление единицы длины проводника единичной площади сечения [Ohm·m], оказываемое движению носителей заряда в проводнике, а также полупроводнике и проводящих ионы растворах, под действием потенциального электрического поля. Удельное электрическое сопротивление постоянному току с одной строны является производным понятием от электрического сопротивления проводника, а с другой - базовым понятием электротехнического материаловедения, так как определяет свойства материала проводника вне зависимости от его длины и формы вообще.

Удельное электрическое сопротивление переменному току - это электрическое сопротивление единицы длины проводника единичной площади (для тонких проводников) [Ohm·m]/ длины поверхности сечения (для толстых проводников) [Ohm], оказываемое движению носителей заряда в проводнике, а также полупроводнике и проводящих ионы растворах, под совместным действием потенциального и вихревого электрического поля определенной частоты. Удельное электрическое сопротивление переменному току всегда больше, чем удельное сопротивление постоянному току в связи с тем, что к сопротивлению постоянному току добавляется всегда положительная величина - сопротивление вихревым движениям носителей электрических зарядов в проводнике (и полупроводнике). Удельное электрическое сопротивление переменному току зависит не только от свойств материала проводника, но и его формы, определяющей параметры вихревого движения носителей электрического заряда. Размерность удельного сопротивления переменному току различна для тонких и толстых проводников. Толстыми проводниками считаются проводники полутолщиной большей, чем глубина проникновения тока в проводник.

В связи с электромагнитными явлениями, возникающими в проводниках при прохождении через него переменного тока в них возникает два важных для их электротехнических свойств физических явления.

Поверхностный эффект, скин-эффект - затухание электромагнитного поля по мере его проникновения в проводящую среду. (см. скин-эффект в физике. поверхностный эффект в электротехнике )

Эффект близости - снижение плотности тока в проводе из-за влияния токов в соседних проводах. (см. поверхностный эффект и эффект близости в электротехнике )

Два последних явления делают неэффективным применение проводников радиусом больше характерной глубины проникновения электрического тока в проводник. Эффективный диаметр проводников (2RБхар ): 50Гц - 2,8мм для 400Гц - 1мм, 40кГц - 0,1мм. Поэтому на высоких частотах эффективно применение лишьт плоскоских проводников и кос, многожильных кабелей (литцендратов )

В связи с высокой проводимостью металлов их сопротивление измеряется специальными приборами - микроомметрами. сегодня, как правило, цифровыми, имеющими нижний предел измерения сопротивления порядка 10 -7 Ом. Используя микроомметры. можно определить качество электрических контактов, сопротивление электрических шин, обмоток трансформаторов. электродвигателей и генераторов. наличие дефектов и инородного металла в слитках (например, сопротивление слитка чистого золота вдвое ниже позолоченного слитка вольфрама).

Для расчета длины провода, его диаметра и необходимого электрического сопротивления, необходимо знать удельное сопротивление проводников ρ.

В международной системе единиц удельное сопротивление ρ выражается формулой:

ρ = Ом · мм 2 /м.

Оно означает: электрическое сопротивление 1 метра провода (в Омах), сечением 1 мм 2. при температуре 20 градусов по Цельсию.

Таблица удельных сопротивлений проводников

Из формулы температурного коэффициента сопротивления определим rt :

Пример 6. Определить сопротивление железной проволоки, нагретой до 200°C, если сопротивление ее при 0°C было 100 Ом.

Пример 7. Термометр сопротивления, изготовленный из платиновой проволоки, в помещении с температурой 15°C имел сопротивление 20 Ом. Термометр поместили в печь и через некоторое время было измерено его сопротивление. Оно оказалось равным 29,6 Ом. Определить температуру в печи.

Таблица сопротивлений

Электрическая проводимость

До сих пор мы рассматривали сопротивление проводника как препятствие, которое оказывает проводник электрическому току. Но все же ток по проводнику проходит. Следовательно, кроме сопротивления (препятствия), проводник обладает также способностью проводить электрический ток, то есть проводимостью.

Чем большим сопротивлением обладает проводник, тем меньшую он имеет проводимость, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем большей проводимостью он обладает, тем легче току пройти по проводнику. Поэтому сопротивление и проводимость проводника есть величины обратные.

Из математики известно, что число, обратное 5, есть 1/5 и, наоборот, число, обратное 1/7, есть 7. Следовательно, если сопротивление проводника обозначается буквой r. то проводимость определяется как 1/r. Обычно проводимость обозначается буквой g.

Электрическая проводимость измеряется в (1/Ом) или в сименсах.

Пример 8. Сопротивление проводника равно 20 Ом. Определить его проводимость.

Если r = 20 Ом, то

Таблица сопротивлений

Пример 9. Проводимость проводника равна 0,1 (1/Ом). Определить его сопротивление,

Если g = 0,1 (1/Ом), то r = 1 / 0,1 = 10 (Ом)

Материалы высокой проводимости

К наиболее широкораспрстраненным материалам высокой проводимости следует отнести медь и алюминий (Сверхпроводящие материалы, имеющие типичное сопротивление в 10 -20 раз ниже обычных проводящих материалов (металлов) рассматриваются в разделе Сверхпроводимость ).

Преимущества меди, обеспечивающие ей широкое применение в качестве проводникового материала, следующие:

  1. малое удельное сопротивление;
  2. достаточно высокая механическая прочность;
  3. удовлетворительная в большинстве случаев применения стойкость по отношению к коррозии;
  4. хорошая обрабатываемость: медь прокатывается в листы, ленты и протягивается в проволоку, толщина которой может быть доведена до тысячных долей миллиметра;
  5. относительная легкость пайки и сварки.

Медь получают чаще всего путем переработки сульфидных руд. После ряда плавок руды и обжигов с интенсивным дутьем медь, предназначенная для электротехнических целей, обязательно проходит процесс электролитической очистки.

В качестве проводникового материала чаще всего используется медь марок М1 и М0. Медь марки М1 содержит 99.9% Cu, а в общем количестве примесей (0.1%) кислорода должно быть не более 0,08%. Присутствие в меди кислорода ухудшает ее механические свойства. Лучшими механическими свойствами обладает медь марки М0, в которой содержится не более 0.05% примесей, в том числе не свыше 0.02% кислорода.

Медь является сравнительно дорогим и дефицитным материалом, поэтому она все шире заменяется другими металлами, особенно алюминием.

В отдельных случаях применяются сплавы меди с оловом, кремнием, фосфором, бериллием, хромом, магнием, кадмием. Такие сплавы, носящие название бронз, при правильно подобранном составе имеют значительно более высокие механические свойства, чем чистая медь.

Алюминий является вторым по значению после меди проводниковым материалом. Это важнейший представитель так называемых легких металлов: плотность литого алюминия около 2.6, а прокатанного - 2.7 Мг/м 3. Т.о. алюминий примерно в 3.5 раза легче меди. Температурный коэффициент расширения, удельная теплоемкость и теплота плавления алюминия больше, чем меди. Вследствие высоких значений удельной теплоемкости и теплоты плавления для нагрева алюминия до температуры плавления и перевода в расплавленное состояние требуется большая затрата тепла, чем для нагрева и расплавления такого же количества меди, хотя температура плавления алюминия ниже, чем меди.

Алюминий обладает пониженными по сравнению с медью свойствами - как механическими, так и электрическими. При одинаковом сечении и длине электрическое сопротивление алюминиевого провода в 1.63 раза больше, чем медного. Весьма важно, что алюминий менее дефицитен, чем медь.

Для электротехнических целей используют алюминий, содержащий не более 0.5% примесей, марки А1. Еще более чистый алюминий марки АВ00 (не более 0.03% примесей) применяют для изготовления алюминиевой фольги, электродов и корпусов электролитических конденсаторов. Алюминий наивысшей чистоты АВ0000 имеет содержание примесей не более 0ю004%. Добавки Ni, Si, Zn или Fe при содержании их 0.5% снижают γ отожженного алюминия не более, чем на 2-3%. Более заметное действие оказывают примеси Cu, Ag и Mg, при том же массовом содержании снижающие γ алюминия на 5-10%. Очень сильно снижают электропроводность алюминия Ti и Mn.

Алюминий весьма активно окисляется и покрывается тонкой оксидной пленкой с большим электрическим сопротивлением. Эта пленка предохраняет металл от дальнейшей коррозии.

Алюминиевые сплавы обладают повышенной механической прочностью. Примером такого сплава является альдрей . содержащий 0.3-0.5% Mg, 0.4-0.7% Si и 0.2-0.3% Fe. В альдрее образуется соединение Mg2 Si, которое сообщает высокие механические свойства сплаву.

Железо и сталь

Железо (сталь) как наиболее дешевый и доступный металл, обладающий к тому же высокой механической прочностью, представляет большой интерес для использования в качестве проводникового материала. Однако даже чистое железо имеет значительно более высокое сравнительно с медью и алюминием удельное сопротивление; ρ стали, т.е. железа с примесью углерода и других элементов, еще выше. Обычная сталь обладает малой стойкостью коррозии: даже при нормальной температуре, особенно в условиях повышенной влажности, она быстро ржавеет; при повышении температуры скорость коррозии резко возрастает. Поэтому поверхность стальных проводов должна быть защищена слоем более стойкого материала. Обычно для этой цели применяют покрытие цинком.

В ряде случаев для уменьшения расхода цветных металлов применяют так называемый биметалл . Это сталь, покрытая снаружи слоем меди, причем оба металла соединены друг с другом прочно и непрерывно.

Весьма перспективным проводниковым материалом является металлический натрий. Натрий может быть получен электролизом расплавленного хлористого натрия NaCl в практически неограниченных количествах. Из сравнения свойств натрия со свойствами других проводниковых металлов видно, что удельное сопротивление натрия примерно в 2.8 раза больше ρ меди и в 1.7 раз больше ρ алюминия, но благодаря чрезвычайно малой плотности натрия (плотность его почти в 9 раз меньше плотности меди), провод из натрия при данной проводимости на единицу длины должен быть значительно легче, чем провод из любого другого металла. Однако натрий чрезвычайно активен химически (он интенсивно окисляется на воздухе, бурно реагирует с водой), почему натриевый провод должен быть защищен герметизирующей оболочкой. Оболочка должна придавать проводу необходимую механическую прочность, так как натрий весьма мягок и имеет малый предел прочности при деформациях.

Литература по удельному сопротивлению проводников

  1. Кузнецов М. И. "Основы электротехники" – 9-е издание, исправленное – Москва: Высшая школа, 1964 – 560с.

Знаете ли Вы, что такое "усталость света"?
Усталость света, анг. tired light - это явление потери энергии квантом электромагнитного излучения при прохождении космических расстояний, то же самое, что эффект красного смещения спектра далеких галактик, обнаруженный Эдвином Хабблом в 1926 г.
На самом деле кванты света, проходя миллиарды световых лет, отдают свою энергию эфиру, "пустому пространству", так как он является реальной физической средой - носителем электромагнитных колебаний с ненулевой вязкостью или трением, и, следовательно, колебания в этой среде должны затухать с расходом энергии на трение. Трение это чрезвычайно мало, а потому эффект "старения света" или "красное смещение Хаббла" обнаруживается лишь на межгалактических расстояниях .
Таким образом, свет далеких звезд не суммируется со светом ближних. Далекие звезды становятся красными, а совсем далекие уходят в радиодиапазон и перестают быть видимыми вообще. Это реально наблюдаемое явление астрономии глубокого космоса. Подробнее читайте в FAQ по эфирной физике .

НОВОСТИ ФОРУМА
Рыцари теории эфира

*****

Вариант 2: для расчета номинал - цвет введите значение ниже

Возможности декодера цветовой маркировки резисторов.

Расчет номинала резистора по цветовому коду:
укажите количество цветных полос и выберите цвет каждой из них (меню выбора цвета находится под каждой полоской). Результат будет выведен в поле "РЕЗУЛЬТАТ"

Расчет цветового кода для заданного значения сопротивления:
Введите значение в поле "РЕЗУЛЬТАТ" и укажите требуемую точность резистора. Полоски маркировки на изображении резистора будут окрашены соответствующим образом. Количество полос декодер подбирает по следующему принципу: приоритет у 4-полосной маркировки резисторов общего назначения, и только если резисторов общего назначения с таким номиналом не существует, выводится 5-ти полосная маркировка 1% или 0.5% резисторов.

Назначение кнопки "РЕВЕРС":
При нажатии на эту кнопку цветовой код резистора будет перестроен зеркальным образом от исходного. Таким образом можно узнать, возможно ли чтение цветового кода в обратном направлении (справа - налево). Эта функция калькулятора нужна в том случае, когда сложно понять, какая полоска в цветовой маркировке резистора является первой. Обычно первая полоска или толще остальных, или расположена ближе к краю резистора. Но в случаях 5-ти и 6-ти полосной цветовой маркировки прецизионных резисторов может не хватить места, чтобы сместить полоски маркировки к одному краю. А толщина полосок может отличаться весьма незначительно. С 4-полосной маркировкой 5% и 10% резисторов общего назначения все проще: последняя полоска, обозначающая точность - золотистого или серебристого цвета, а эти цвета никак не могут быть у первой полоски.

Назначение кнопки "М+":
Эта кнопка позволит сохранить в памяти текущую цветовую маркировку. Сохраняется до 9 цветовых маркировок резисторов. Кроме того, автоматически сохраняются в память калькулятора все значения, выбранные из колонок примеров цветовой маркировки, из таблицы значений в стандартных рядах, любые значения (правильные и неправильные), введенные в поле "Результат", и только правильные значения, введенные с помощью меню выбора цвета полосок либо кнопок "+" и "-". Функция удобна, когда требуется определить цветовую маркировку нескольких резисторов - всегда можно быстро вернуться к маркировке любого из уже проверенных. Красным цветом в списке обозначаются значения с ошибочной и нестандартной цветовой маркировкой (значение не принадлежит к стандартным рядам, кодированный цветом допуск на резисторе не соответствует допуску стандартного ряда, к которому относится значение и т.д.).

Кнопка "MC": - очистка всей памяти. Для удаления из списка только одной записи покройте оную двойным кликом.

Назначение кнопки "Исправить":
При нажатии на эту кнопку (если в цветовом коде резистора допущена ошибка) будет предложен один из возможных правильных вариантов.

Назначение кнопок "+" и "-" :
При нажатии на них значение в соответствующей полоске изменится на один шаг в большую или меньшую сторону.

Назначение информационное поля (под полем "РЕЗУЛЬТАТ"):
В нем выводятся сообщения, к каким стандартным рядам принадлежит введенное значение (с какими допусками резисторы этого номинала выпускаются промышленностью), а так же сообщения об ошибках. Если значение не является стандартным, то либо вы допустили ошибку, либо производитель резистора не придерживается общепринятого стандарта (что случается).

Примеры цветовой кодировки резисторов:
Слева приведены примеры цветовой маркировки 1%, а справа - 5% резисторов. Кликните по значению в списке, и полоски на изображении резистора будут перекрашены в соответствующие цвета.

Таблица, расположенная выше, содержит стандартные значения сопротивлений. Таблица автоматически прокручивается до значений, которые находятся ближе всего к величине, заданной цветовым кодом на изображении резистора. Практически все номиналы постоянных резисторов, которые выпускаются промышленностью, берутся из стандартных рядов и получены умножением значения из стандартного ряда на 10 в определенной степени (номинал в данном случае в Омах, т.е. 28.7кОм = стандартное значение 287, умноженное на 10 в степени 2 /Ом/). Каждому ряду соответствует своя точность резисторов.

*****

Адрес этой страницы (вложенность) в справочнике dpva.ru:главная страница / / Техническая информация / / Физический справочник / / Электрические и магнитные величины / / Электрическое сопротивление и проводимость проводников, растворов, почв./ / Таблица удельных сопротивлений проводников. Таблица удельных сопротивлений металлов.

Таблица удельных сопротивлений проводников. Таблица удельных сопротивлений металлов.

Поделитесь ссылкой с друзьями:

Таблица удельных сопротивлений проводников. Таблица удельных сопротивлений металлов.
Зависимость сопротивления металлов от температуры. Температурный коэффициент электрического сопротивления металлов α .

  • В разумных температурных пределах вокруг некоторой точки зависимость удельного сопротивления металлов от температуры описывается как:
  • ΔR = α*R*ΔT. где α - температурный коэффициент электрического сопротивления.
  • Ниже приведена таблица значений α для ряда металлов в диапазоне температур от 0 до 100 ° C.

Зависимость сопротивления металлов от температуры. Температурный коэффициент электрического сопротивления металлов α.

Удельное сопротивление
ρ, Ом*мм 2 /м

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *