Схема преобразователя

Радиосхемы для автолюбителя

Подробности Родительская категория: Схемы

Преобразователь своими руками 12-220V

Схема преобразователя

В последнее время все больше людей увлекается сборкой инвертеров (преобразователей) своими руками. Предложенная сборка способна выдать мощность до 300Вт.

В качестве задающего генератора задействован старый и добрый мультивибратор. Разумеется, такое решение многим уступает современным высокоточным генераторам на микросхемах, но давайте не забудем, что я стремился максимально упростить схему так, чтобы в итоге получился инвертор, который будет доступен широкой публике. Мультивибратор - не есть плохо, он работает более надежно, чем некоторые микросхемы, не так критичен к входным напряжениям, работает при суровых погодных условиях (вспомним TL494, которую нужно подогревать, при минусовых температурах).

Трансформатор использован готовый, от UPS, габариты сердечника позволяют снять 300 ватт выходной мощности. Трансформатор имеет две первичные обмотки на 7 Вольт (каждое плечо) и сетевую обмотку на 220 Вольт. По идее, подойдут любые трансформаторы от бесперебойников.

Диаметр провода первичной обмотки где-то 2,5мм, как раз то, что нужно.

Схема преобразователя

Основные характеристики схемы

Номинал входного напряжения - 3,5-18 Вольт
Выходное напряжение 220Вольт +/-10%
Частота на выходе - 57 Гц
Форма выходных импульсов - Прямоугольная
Максимальная мощность - 250-300 Ватт.

Долго думал какие у схемы недостатки, на счет КПД, оно на 5-10% ниже аналогичных промышленных устройств.
Схема не имеет никаких защит на входе и на выходе, при КЗ и перегрузке полевые ключи будут перегреваться до тех пор, пока не выйдут из строя.
Из за формы импульсов, трансформатор издает некий шум, но это вполне нормально для таких схем.

Простота, доступность, затраты, 50 Гц на выходе, компактные размеры платы, легкий ремонт, возможность работы в суровых погодных условиях, широкий допуск используемых компонентов - все эти достоинства делают схему универсальной и доступной для самостоятельного повторения.

Китайский инвертор на 250-300 ватт, можно купить где-то за 30-40$, на этот инвертор я потратил 5$ - купил только полевые транзисторы, все остальное найдется на чердаке думаю у каждого.

Схема преобразователя

В обвязке минимальное количество компонентов. Транзисторы IRFZ44 можно с успехом заменить на IRFZ40/46/48 или на более мощные - IRF3205/IRL3705, они не критичны.

Схема преобразователя

Транзисторы мультивибратора TIP41 (КТ819) можно заменить на КТ805, КТ815, КТ817 и т.п.

С успехом подключал к этому инвертору телевизор, пылесос и другие бытовые устройства, работает неплохо, если устройство имеет встроенный импульсный БП, то вы не заметите разницы в работе от сети и от преобразователя, в случае запитки дрели - запускается с неким звуком, но работает довольно хорошо.

Плата была нарисована вручную обыкновенным маникюрным лаком.

Схема преобразователя

Схема преобразователя

В итоге инвертор понравился на столько, что решил поместить в корпус от компьютерного блока питания.
Реализована также функция REM, для включения схемы нужно всего лишь подключить провод REM на плюсовую шину, тогда поступит питание на генератор и схема начнет работать.

Схема преобразователя

*****

Как работают импульсные преобразователи напряжения (27 схем)

Для преобразования напряжения одного уровня в напряжение другого уровня часто применяют импульсные преобразователи напряжения с использованием индуктивных накопителей энергии. Такие преобразователи отличаются высоким КПД, иногда достигающим 95%, и обладают возможностью получения повышенного, пониженного или инвертированного выходного напряжения.

В соответствии с этим известно три типа схем преобразователей: понижающие (рис. 1), повышающие (рис. 2) и инвертирующие (рис. 3).

Общими для всех этих видов преобразователей являются пять элементов :

  1. источник питания,
  2. ключевой коммутирующий элемент,
  3. индуктивный накопитель энергии (катушка индуктивности, дроссель),
  4. блокировочный диод,
  5. конденсатор фильтра, включенный параллельно сопротивлению нагрузки.

Включение этих пяти элементов в различных сочетаниях позволяет реализовать любой из трех типов импульсных преобразователей.

Регулирование уровня выходного напряжения преобразователя осуществляется изменением ширины импульсов, управляющих работой ключевого коммутирующего элемента и, соответственно, запасаемой в индуктивном накопителе энергии.

Стабилизация выходного напряжения реализуется путем использования обратной связи: при изменении выходного напряжения происходит автоматическое изменение ширины импульсов.

Понижающий импульсный преобразователь

Понижающий преобразователь (рис. 1) содержит последовательно включенную цепочку из коммутирующего элемента S1, индуктивного накопителя энергии L1, сопротивления нагрузки RH и включенного параллельно ему конденсатора фильтра С1. Блокировочный диод VD1 подключен между точкой соединения ключа S1 с накопителем энергии L1 и общим проводом.

Схема преобразователя

Рис. 1. Принцип действия понижающего преобразователя напряжения.

При открытом ключе диод закрыт, энергия от источника питания накапливается в индуктивном накопителе энергии. После того, как ключ S1 будет закрыт (разомкнут), запасенная индуктивным накопителем L1 энергия через диод VD1 передастся в сопротивление нагрузки RH, Конденсатор С1 сглаживает пульсации напряжения.

Повышающий импульсный преобразователь

Повышающий импульсный преобразователь напряжения (рис. 2) выполнен на тех же основных элементах, но имеет иное их сочетание: к источнику питания подключена последовательная цепочка из индуктивного накопителя энергии L1, диода VD1 и сопротивления нагрузки RH с параллельно подключенным конденсатором фильтра С1. Коммутирующий элемент S1 включен между точкой соединения накопителя энергии L1 с диодом VD1 и общей шиной.

Схема преобразователя

Рис. 2. Принцип действия повышающего преобразователя напряжения.

При открытом ключе ток от источника питания протекает через катушку индуктивности, в которой запасается энергия. Диод VD1 при этом закрыт, цепь нагрузки отключена от источника питания, ключа и накопителя энергии.

Напряжение на сопротивлении нагрузки поддерживается благодаря запасенной на конденсаторе фильтра энергии. При размыкании ключа ЭДС самоиндукции суммируется с напряжением питания, запасенная энергия передается в нагрузку через открытый диод VD1. Полученное таким способом выходное напряжение превышает напряжение питания.

Инвертирующий преобразователь импульсного типа

Инвертирующий преобразователь импульсного типа содержит все то же сочетание основных элементов, но снова в ином их соединении (рис. 3): к источнику питания подключена последовательная цепочка из коммутирующего элемента S1, диода VD1 и сопротивления нагрузки RH с конденсатором фильтра С1.

Индуктивный накопитель энергии L1 включен между точкой соединения коммутирующего элемента S1 с диодом VD1 и общей шиной.

Схема преобразователя

Рис. 3. Импульсное преобразование напряжения с инвертированием.

Работает преобразователь так: при замыкании ключа энергия запасается в индуктивном накопителе. Диод VD1 закрыт и не пропускает ток от источника питания в нагрузку. При отключении ключа ЭДС самоиндукции накопителя энергии оказывается приложенной к выпрямителю, содержащему диод VD1, сопротивление нагрузки Rн и конденсатор фильтра С1.

Поскольку диод выпрямителя пропускает в нагрузку только импульсы отрицательного напряжения, на выходе устройства формируется напряжение отрицательного знака (инверсное, противоположное по знаку напряжению питания).

Импульсные преобразователи и стабилизаторы

Для стабилизации выходного напряжения импульсных стабилизаторов любого типа могут быть использованы обычные «линейные» стабилизаторы, но они имеют низкий КПД, В этой связи гораздо логичнее для стабилизации выходного напряжения импульсных преобразователей использовать импульсные же стабилизаторы напряжения, тем более, что осуществить такую стабилизацию совсем несложно.

Импульсные стабилизаторы напряжения, в свою очередь, подразделяются на стабилизаторы с широтно-импульсной модуляцией и на стабилизаторы с частотно-импульсной модуляцией. В первых из них изменяется длительность управляющих импульсов при неизменной частоте их следования. Во вторых, напротив, изменяется частота управляющих импульсов при их неизменной длительности. Встречаются импульсные стабилизаторы и со смешанным регулированием.

Ниже будут рассмотрены радиолюбительские примеры эволюционного развития импульсных преобразователей и стабилизаторов напряжения.

Узлы и схемы импульсных преобразователей

Задающий генератор (рис. 4) импульсных преобразователей с нестабилизированным выходным напряжением (рис. 5, 6) на микросхеме КР1006ВИ1 работает на частоте 65 кГц. Выходные прямоугольные импульсы генератора через RC-цепоч-ки подаются на транзисторные ключевые элементы, включенные параллельно.

Катушка индуктивности L1 выполнена на ферритовом кольце с внешним диаметром 10 мм и магнитной проницаемостью 2000. Ее индуктивность равна 0,6 мГн. Коэффициент полезного действия преобразователя достигает 82%.

Схема преобразователя

Рис. 4. Схема задающего генератора для импульсных преобразователей напряжения.

Схема преобразователя

Рис. 5. Схема силовой части повышающего импульсного преобразователя напряжения +5/12 В.

Схема преобразователя

Рис. 6. Схема инвертирующего импульсного преобразователя напряжения +5/-12 В.

Амплитуда пульсаций на выходе не превышает 42 мВ и зависит от величины емкости конденсаторов на выходе устройства. Максимальный ток нагрузки устройств (рис. 5, 6) составляет 140 мА .

В выпрямителе преобразователя (рис. 5, 6) использовано параллельное соединение слаботочных высокочастотных диодов, включенных последовательно с выравнивающими резисторами R1 — R3.

Вся эта сборка может быть заменена одним современным диодом, рассчитанным на ток более 200 мА при частоте до 100 кГц и обратном напряжении не менее 30 В (например, КД204, КД226).

В качестве VT1 и VT2 возможно использование транзисторов типа КТ81х структуры п-р-п — КТ815, КТ817 (рис. 4.5) и р-п-р — КТ814, КТ816 (рис. 6) и другие.

Для повышения надежности работы преобразователя рекомендуется включить параллельно переходу эмиттер — коллектор транзистора диод типа КД204, КД226 таким образом, чтобы для постоянного тока он был закрыт.

Преобразователь с задающим генератором-мультивибратором

Для получения выходного напряжения величиной 30. 80 В П. Беляцкий использовал преобразователь с задающим генератором на основе несимметричного мультивибратора с выходным каскадом, нагруженным на индуктивный накопитель энергии — катушку индуктивности (дроссель) L1 (рис. 7).

Схема преобразователя

Рис. 7. Схема преобразователя напряжения с задающим генератором на основе несимметричного мультивибратора.

Устройство работоспособно в диапазоне питающих напряжений 1,0. 1,5 В и имеет КПД до 75%. В схеме можно применить стандартный дроссель ДМ-0,4-125 или иной с индуктивностью 120. 200 мкГн.

Вариант выполнения выходного каскада преобразователя напряжения показан на рис. 8. При подаче на вход каскада управляющих сигналов прямоугольной формы 7777-уровня (5 В) на выходе преобразователя при его питании от источника напряжением 12 В получено напряжение 250 В при токе нагрузки 3. 5 мА (сопротивление нагрузки около 100 кОм). Индуктивность дросселя L1 — 1 мГн.

В качестве VT1 можно использовать отечественный транзистор, например, КТ604, КТ605, КТ704Б, КТ940А(Б), КТ969А и др.

Схема преобразователя

Рис. 8. Вариант выполнения выходного каскада преобразователя напряжения.

Схема преобразователя

Рис. 9. Схема выходного каскада преобразователя напряжения.

Аналогичная схема выходного каскада (рис. 9) позволила при питании от источника напряжением 28В и потребляемом токе 60 мА получить выходное напряжение 250 В при токе нагрузки 5 мА. Индуктивность дросселя — 600 мкГч. Частота управляющих импульсов — 1 кГц.

В зависимости от качества изготовления дросселя на выходе может быть получено напряжение 150. 450 В при мощности около 1 Вт и КПД до 75%.

Преобразователь напряжения на основе КР1006ВИ1

Преобразователь напряжения, выполненный на основе генератора импульсов на микросхеме DA1 КР1006ВИ1, усилителя на основе полевого транзистора VT1 и индуктивного накопителя энергии с выпрямителем и фильтром, показан на рис. 10.

На выходе преобразователя при напряжении питания и потребляемом токе 80. 90 мА образуется напряжение 400. 425 В. Следует отметить, что величина выходного напряжение не гарантирована — она существенно зависит от способа выполнения катушки индуктивности (дросселя) L1.

Схема преобразователя

Рис. 10. Схема преобразователя напряжения с генератором импульсов на микросхеме КР1006ВИ1.

Для получения нужного напряжения проще всего экспериментально подобрать катушку индуктивности для достижения требуемого напряжения или использовать умножитель напряжения.

Схема двуполярного импульсного преобразователя

Для питания многих электронных устройств требуется источник двухполярного напряжения, обеспечивающий положительное и отрицательное напряжения питания. Схема, приведенная на рис. 11, содержит гораздо меньшее число компонентов, чем аналогичные устройства, благодаря тому, что она одновременно выполняет функции повышающего и инвертирующего индуктивного преобразователя.

Схема преобразователя

Рис. 11. Схема преобразователя с одним индуктивным элементом.

Схема преобразователя (рис. 11) использует новое сочетание основных компонентов и включает в себя генератор четырехфазных импульсов, катушку индуктивности и два транзисторных ключа.

Управляющие импульсы формирует D-триггер (DD1.1). В течение первой фазы импульсов катушка индуктивности L1 запасается энергией через транзисторные ключи VT1 и VT2. В течение второй фазы ключ VT2 размыкается, и энергия передается на шину положительного выходного напряжения.

Во время третьей фазы замыкаются оба ключа, в результате чего катушка индуктивности вновь накапливает энергию. При размыкании ключа VT1 во время заключительной фазы импульсов эта энергия передается на отрицательную шину питания. При поступлении на вход импульсов с частотой 8 кГц схема обеспечивает выходные напряжения ±12 В. На временной диаграмме (рис. 11, справа) показано формирование управляющих импульсов.

В схеме можно использовать транзисторы КТ315, КТ361.

Преобразователь напряжения со стабильными 30В

Преобразователь напряжения (рис. 12) позволяет получить на выходе стабилизированное напряжение 30 В. Напряжение такой величины используется для питания варикапов, а также вакуумных люминесцентных индикаторов.

Схема преобразователя

Рис. 12. Схема преобразователя напряжения с выходным стабилизированным напряжением 30 В.

На микросхеме DA1 типа КР1006ВИ1 по обычной схеме собран задающий генератор, вырабатывающий прямоугольные импульсы с частотой около 40 кГц.

К выходу генератора подключен транзисторный ключ VT1, коммутирующий катушку индуктивности L1. Амплитуда импульсов при коммутации катушки зависит от качества ее изготовления.

Во всяком случае напряжение на ней достигает десятков вольт. Выходное напряжение выпрямляется диодом VD1. К выходу выпрямителя подключен П-образный RC-фильтр и стабилитрон VD2. Напряжение на выходе стабилизатора целиком определяется типом используемого стабилитрона. В качестве «высоковольтного» стабилитрона можно использовать цепочку стабилитронов, имеющих более низкое напряжение стабилизации.

Преобразователь напряжения с индуктивным накопителем энергии

Преобразователь напряжения с индуктивным накопителем энергии, позволяющий поддерживать на выходе стабильное регулируемое напряжение, показан на рис. 13.

Схема преобразователя

Рис. 13. Схема преобразователя напряжения со стабилизацией.

Схема содержит генератор импульсов, двухкаскадный усилитель мощности, индуктивный накопитель энергии, выпрямитель, фильтр, схему стабилизации выходного напряжения. Резистором R6 устанавливают необходимое выходное напряжение в пределах от 30 до 200 В.

Аналоги транзисторов: ВС237В — КТ342А, КТ3102; ВС307В — КТ3107И, BF459—КТ940А.

Понижающие и инвертирующие преобразователей напряжения

Два варианта — понижающего и инвертирующего преобразователей напряжения [4.1] показаны на рис. 14. Первый из них обеспечивает выходное напряжение 8,4 В при токе нагрузки до 300 мА. второй — позволяет получить напряжение отрицательной полярности (-19,4 В ) при таком же токе нагрузки. Выходной транзистор ѴТЗ должен быть установлен на радиатор.

Схема преобразователя

Рис. 14. Схемы стабилизированных преобразователей напряжения.

Аналоги транзисторов: 2N2222 — КТЗ117А 2N4903 — КТ814.

Понижающий стабилизированный преобразователь напряжения

Понижающий стабилизированный преобразователь напряжения, использующий в качестве задающего генератора микросхему КР1006ВИ1 (DA1) и имеющий защиту потоку нагрузки, показан на рис. 15. Выходное напряжение составляет 10 В при токе нагрузки до 100 мА.

Схема преобразователя

Рис. 15. Схема понижающего преобразователя напряжения.

При изменении сопротивления нагрузки на 1% выходное напряжение преобразователя изменяется не более чем на 0,5%.

Аналоги транзисторов: 2N1613 — КТ630Г, 2N2905 — КТ3107Е, КТ814.

Двухполярный инвертор напряжения

Для питания радиоэлектронных схем, содержащих операционные усилители, часто требуются двухполярные источники питания. Решить эту проблему можно, использовав инвертор напряжения, схема которого показана на рис. 16.

Устройство содержит генератор прямоугольных импульсов, нагруженный на дроссель L1. Напряжение с дросселя выпрямляется диодом VD2 и поступает на выход устройства (конденсаторы фильтра СЗ и С4 и сопротивление нагрузки). Стабилитрон VD1 обеспечивает постоянство выходного напряжения — регулирует длительность импульса положительной полярности на дросселе.

Схема преобразователя

Рис. 16. Схема инвертора напряжения +15/-15 В.

Рабочая частота генерации — около 200 кГц под нагрузкой и до 500 кГц без нагрузки. Максимальный ток нагрузки — до 50 мА, КПД устройства — 80%.

Недостатком конструкции является относительно высокий уровень электромагнитных помех, впрочем, характерный и для других подобных схем.

В качестве L1 использован дроссель ДМ-0,2-200.

Инверторы на специализированных микросхемах

Наиболее удобно собирать высокоэффективные современные преобразователи напряжения. используя специально созданные для этих целей микросхемы.

Микросхема КР1156ЕУ5 (МС33063А, МС34063А фирмы Motorola) предназначена для работы в стабилизированных повышающих, понижающих, инвертирующих преобразователях мощностью в несколько ватт.

На рис. 17 приведена схема повышающего преобразователя напряжения на микросхеме КР1156ЕУ5. Преобразователь содержит входные и выходные фильтрующие конденсаторы С1, СЗ, С4, накопительный дроссель L1, выпрямительный диод VD1, конденсатор С2, задающий частоту работы преобразователя, дроссель фильтра L2 для сглаживания пульсаций. Резистор R1 служит датчиком тока. Делитель напряжения R2, R3 определяет величину выходного напряжения.

Схема преобразователя

Рис. 17. Схема повышающего преобразователя напряжения на микросхеме КР1156ЕУ5.

Частота работы преобразователя близка к 15 кГц при входном напряжении 12 В и номинальной нагрузке. Размах пульсаций напряжения на конденсаторах СЗ и С4 составлял соответственно 70 и 15 мВ.

Дроссель L1 индуктивностью 170 мкГн намотан на трех склеенных кольцах К12x8x3 М4000НМ проводом ПЭШО 0,5. Обмотка состоит из 59 витков. Каждое кольцо перед намоткой следует разломить на две части.

В один из зазоров вводят общую прокладку из текстолита толщиной 0,5 мм и склеивают пакет. Можно также применить кольца из феррита с магнитной проницаемостью свыше 1000.

Пример выполнения понижающего преобразователя на микросхеме КР1156ЕУ5 приведен на рис. 18. На вход такого преобразователя нельзя подавать напряжение более 40 В. Частота работы преобразователя — 30 кГц при UBX=15 В. Размах пульсаций напряжения на конденсаторах СЗ и С4 — 50 мВ.

Схема преобразователя

Рис. 18. Схема понижающего преобразователя напряжения на микросхеме КР1156ЕУ5.

Схема преобразователя

Рис. 4.19. Схема инвертирующего преобразователя напряжения на микросхеме КР1156ЕУ5.

Дроссель L1 индуктивностью 220 мкГч намотан аналогичным образом (см. выше) на трех кольцах, но зазор при склейке был установлен 0,25 мм, обмотка содержала 55 витков такого же провода.

На следующем рисунке (рис. 4.19) показана типовая схема инвертирующего преобразователя напряжения на микросхеме КР1156ЕУ5, Микросхема DA1 питается суммой входного и выходного напряжений, которая не должна превышать 40 В.

Частота работы преобразователя — 30 кГц при UBX=5 S; размах пульсаций напряжения на конденсаторах СЗ и С4 — 100 и 40 мВ.

Для дросселя L1 инвертирующего преобразователя индуктивностью 88 мкГн были использованы два кольца К12x8x3 М4000НМ с зазором 0,25 мм. Обмотка состоит из 35 витков провода ПЭВ-2 0,7. Дроссель L2 во всех преобразователях стандартный — ДМ-2,4 индуктивностью 3 мкГч. Диод VD1 во всех схемах (рис. 17 — 19) должен быть диодом Шотки.

Для получения двухполярного напряжения из однополярного фирмой MAXIM разработаны специализированные микросхемы. На рис. 20 показана возможность преобразования напряжения низкого уровня (4,5. 5 6) в двухполярное выходное напряжение 12 (или 15 6) при токе нагрузки до 130 (или 100 мА).

Схема преобразователя

Рис. 20. Схема преобразователя напряжения на микросхеме МАХ743.

По внутренней структуре микросхема не отличается от типового построения подобного рода преобразователей, выполненных на дискретных элементах, однако интегральное исполнение позволяет при минимальном количестве внешних элементов создавать высокоэффективные преобразователи напряжения.

Так, для микросхемы МАХ743 (рис. 20) частота преобразования может достигать 200 кГц (что намного превышает частоту преобразования подавляющего большинства преобразователей, выполненных на дискретных элементах). При напряжении питания 5 В КПД составляет 80. 82% при нестабильности выходного напряжения не более 3%.

Микросхема снабжена защитой от аварийных ситуаций: при снижении питающего напряжения на 10% ниже нормы, а также при перегреве корпуса (выше 195°С).

Для снижения на выходе преобразователя пульсаций с частотой преобразования (200 кГц) на выходах устройства установлены П-образные LC-фильтры. Перемычка J1 на выводах 11 и 13 микросхемы предназначена для изменения величины выходных напряжений.

Для преобразования напряжения низкого уровня (2,0. 4,5 6) в стабилизированное 3,3 или 5,0 В предназначена специальная микросхема, разработанная фирмой MAXIM, — МАХ765. Отечественные аналоги — КР1446ПН1А и КР1446ПН1Б. Микросхема близкого назначения — МАХ757 — позволяет получить на выходе плавно регулируемое напряжение в пределах 2,7. 5,5 В.

Схема преобразователя

Рис. 21. Схема низковольтного повышающего преобразователя напряжения до уровня 3,3 или 5,0 В.

Схема преобразователя, показанная на рис. 21, содержит незначительное количество внешних (навесных) деталей.

Работает это устройство по традиционному принципу, описанному ранее. Рабочая частота генератора зависит от величины входного напряжения и тока нагрузки и изменяется в широких пределах — от десятков Гц до 100 кГц.

Величина выходного напряжения определяется тем, куда подключен вывод 2 микросхемы DA1: если он соединен с общей шиной (см. рис. 21), выходное напряжение микросхемы КР1446ПН1А равно 5,0±0,25 В, если же этот вывод соединен с выводом 6, то выходное напряжение понизится до 3,3±0,15 В. Для микросхемы КР1446ПН1Б значения будут 5,2±0,45 В и 3,44±0,29 В. соответственно. Максимальный выходной ток преобразователя — 100 мА. Микросхема МАХ765 обеспечивает выходной ток 200 мА при напряжении 5-6 и 300 мА при напряжении 3,3 В. КПД преобразователя — до 80%.

Назначение вывода 1 (SHDN) — временное отключение преобразователя путем замыкания этого вывода на общий провод. Напряжение на выходе в этом случае понизится до значения, несколько меньшего, чем входное напряжение.

Светодиод HL1 предназначен для индикации аварийного снижения питающего напряжения (ниже 2 В), хотя сам преобразователь способен работать и при более низких значениях входного напряжения (до 1,25 6 и ниже).

Дроссель L1 выполняют на кольце К10x6x4,5 из феррита М2000НМ1. Он содержит 28 витков провода ПЭШО 0,5 мм и имеет индуктивность 22 мкГч. Перед намоткой ферритовое кольцо разламывают пополам, предварительно надпилив алмазным надфилем. Затем кольцо склеивают эпоксидным клеем, установив в один из образовавшихся зазоров текстолитовую прокладку толщиной 0,5 мм.

Индуктивность полученного таким образом дросселя зависит в большей степени от толщины зазора и в меньшей — от магнитной проницаемости сердечника и числа витков катушки. Если смириться с увеличением уровня электромагнитных помех, то можно использовать дроссель типа ДМ-2,4 индуктивностью 20 мкГч.

Конденсаторы С2 и С5 типа К53 (К53-18), С1 и С4 — керамические (для снижения уровня высокочастотных помех), VD1 — диод Шотки (1 N5818, 1 N5819, SR106, SR160 и др.).

Сетевой блок питания фирмы «Philips»

Преобразователь (сетевой блок питания фирмы «Philips», рис. 22) при входном напряжении 220 В обеспечивает выходное стабилизированное напряжение 12 В при мощности нагрузки 2 Вт.

Схема преобразователя

Рис. 22. Схема сетевого блока питания фирмы «Philips».

Источник питания для питания портативных и карманных приемников

Бестрансформаторный источник питания (рис. 23) предназначен для питания портативных и карманных приемников от сети переменного тока напряжением 220 В. Следует учитывать, что этот источник электрически не изолирован от питающей сети. При выходном напряжении 9В и токе нагрузки 50 мА источник питания потребляет от сети около 8 мА.

Схема преобразователя

Рис. 23. Схема бестрансформаторного источника питания на основе импульсного преобразователя напряжения.

Сетевое напряжение, выпрямленное диодным мостом VD1 — VD4 (рис. 4.23), заряжает конденсаторы С1 и С2. Время заряда конденсатора С2 определяется постоянной цепи R1, С2. В первый момент после включения устройства тиристор VS1 закрыт, но при некотором напряжении на конденсаторе С2 он откроется и подключит к этому конденсатору цепь L1, СЗ.

При этом от конденсатора С2 будет заряжаться конденсатор СЗ большой емкости. Напряжение на конденсаторе С2 будет уменьшаться, а на СЗ — увеличиваться.

Ток через дроссель L1, равный нулю в первый момент после открывания тиристора, постепенно увеличивается до тех пор, пока напряжения на конденсаторах С2 и СЗ не уравняются. Как только это произойдет, тиристор VS1 закроется, но энергия, запасенная в дросселе L1, будет некоторое время поддерживать ток заряда конденсатора СЗ через открывшийся диод VD5. Далее диод VD5 закрывается, и начинается относительно медленный разряд конденсатора СЗ через нагрузку. Стабилитрон VD6 ограничивает напряжение на нагрузке.

Как только закрывается тиристор VS1 напряжение на конденсаторе С2 снова начинает увеличиваться. В некоторый момент тиристор снова открывается, и начинается новый цикл работы устройства. Частота открывания тиристора в несколько раз превышает частоту пульсации напряжения на конденсаторе С1 и зависит от номиналов элементов цепи R1, С2 и параметров тиристора VS1.

Конденсаторы С1 и С2 — типа МБМ на напряжение не ниже 250 В. Дроссель L1 имеет индуктивность 1. 2 мГн и сопротивление не более 0,5 Ом. Он намотан на цилиндрическом каркасе диаметром 7 мм.

Ширина обмотки 10 мм, она состоит из пяти слоев провода ПЭВ-2 0,25 мм, намотанного плотно, виток к витку. В отверстие каркаса вставлен подстроечный сердечник СС2,8х12 из феррита М200НН-3. Индуктивность дросселя можно менять в широких пределах, а иногда и исключить его совсем.

Схемы устройств для преобразования энергии

Схемы устройств для преобразования энергии показаны на рис. 4.24 и 4.25. Они представляют собой понижающие преобразователи энергии с питанием от выпрямителей с гасящим конденсатором. Напряжение на выходе устройств стабилизировано.

Схема преобразователя

Рис. 24. Схема понижающего преобразователя напряжения с сетевым бестрансформаторным питанием.

Схема преобразователя

Рис. 25. Вариант схемы понижающего преобразователя напряжения с сетевым бестрансформаторным питанием.

В качестве динисторов VD4 можно использовать отечественные низковольтные аналоги — КН102А, Б. Как и предыдущее устройство (рис. 23), источники питания (рис. 24 и 25) имеют гальваническую связь с питающей сетью.

Преобразователь напряжения с импульсным накоплением энергии

В преобразователе напряжения С. Ф. Сиколенко с «импульсным накоплением энергии» (рис. 26) ключи К1 и К2 выполнены на транзисторах КТ630, система управления (СУ) — на микросхеме серии К564.

Схема преобразователя

Рис. 26. Схема преобразователя напряжения с импульсным накоплением.

Накопительный конденсатор С1 — 47 мкФ. В качестве источника питания используется батарея напряжением 9 В. Выходное напряжение на сопротивлении нагрузки 1 кОм достигает 50 В. КПД составляет 80% и возрастает до 95% при использовании в качестве ключевых элементов К1 и К2 КМОП-структур типа RFLIN20L.

Импульсно-резонансный преобразователь

Импульсно-резонансные преобразователи конструкции к,т.н. Н. М. Музыченко, один из которых показан на рис. 4,27, в зависимости от формы тока в ключе VT1 делятся на три разновидности, в которых коммутирующие элементы замыкаются при нулевом токе, а размыкаются — при нулевом напряжении. На этапе переключения преобразователи работают как резонансные, а остальную, большую, часть периода — как импульсные.

Схема преобразователя

Рис. 27. Схема импульсно-резонансного преобразователя Н. М. Музыченко.

Отличительной чертой таких преобразователей является то, что их силовая часть выполнена в виде индуктивно-емкостного моста с коммутатором в одной диагонали и с коммутатором и источником питания в другом. Такие схемы (рис. 27) отличаются высокой эффективностью.

Источник: Шустов М. А. Практическая схемотехника. Преобразователи напряжения.

*****

Преобразователь с 12 на 220 – для чего он нужен, и можно ли собрать прибор в домашних условиях

При использовании маломощных бытовых приборов часто возникает потребность в преобразователе напряжения с 12 на 220 вольт. Это может быть ноутбук, зарядное устройство для мобильного телефона или планшета, и даже телевизор на LED элементах.

В каких случаях необходим преобразователь напряжения:

  1. Продолжительная авария централизованного энергоснабжения;
  2. Аварийное энергоснабжение электроники газового котла;
  3. Отсутствие бытовой сети 220 вольт (удаленный садовый участок, гаражный кооператив);
  4. Автомобиль;
  5. Туристическая стоянка (при наличии возможности взять с собой 12 вольтовой аккумулятор).

Во всех этих случаях, достаточно иметь заряженный аккумулятор, и вы сможете полноценно использовать сетевое электрооборудования. Важно! Потребляемая мощность прибора не должна превышать несколько сотен ватт. Более мощные устройства быстро посадят аккумулятор, используемый в качестве донора.

Справедливости ради отметим, что для использования в автомобиле существуют блоки питания и зарядные устройства, подключаемые у бортовой сети 12 вольт. Выполнены они в виде разъема, соединяемого с розеткой прикуривателя.

Схема преобразователя

Однако, если у вас несколько гаджетов, вам придется разориться на покупку такого же количества зарядок. А имея один преобразователь с 12 на 220 — вы обеспечите полную универсальность подключения.

В продаже имеется большой ассортимент готовых преобразователей.

Мощность варьируется от 150 Вт до нескольких киловатт. Разумеется, для каждой мощности потребителя необходимо подбирать соответствующий аккумулятор. Также необходимо внимательно читать технические характеристики — часто, в рекламных целях, производители указывают на упаковке пиковую мощность, которую преобразователь выдерживает всего несколько секунд. Рабочая мощность, как правило, на 25% — 30% ниже.

Разновидности преобразователей 12 на 220 вольт

Для правильного выбора, ознакомьтесь с основными видами преобразователей напряжения, представленными на рынке электротоваров:

По форме сигнала выходного напряжения

Устройства делятся на чистый синус и модифицированный синус. Разницу в форме сигнала видно на иллюстрации.

Схема преобразователя

Дело в том, что преобразователи работают не так, как генераторы переменного тока. На входе в устройство подается постоянный ток определенной величины.

Сначала он преобразуется в импульсный (для обеспечения работы повышающего трансформатора), затем из полученного пульсирующего тока формируется синусоидальная кривая, привычная для большинства потребителей переменного напряжения 220 вольт. Для получения гладкой кривой необходима дорогостоящая схема, а большинство производителей стараются предложить покупателю экономную цену.

Зарядным устройствам и блокам питания ноутбуков подойдет и модифицированная кривая. А звуковоспроизводящая аппаратура может работать с перебоями и сильными помехами. Некоторые блоки питания, например, в LED телевизорах, сильно греются при таком входном сигнале.

Имеются случаи выхода из строя блоков питания. Устройства с электродвигателями (например, компрессор холодильника или насос газового котла) также может работать со сбоями при подключении к преобразователю с модифицированным синусом.

По реализации повышающей функции. Способов получить переменное напряжение из постоянного достаточно много. Рассмотрим основные из них:

Трансформаторные устройства

Имеют достаточно примитивную, но при этом эффективную конструкцию. Это самый простой преобразователь, который можно собрать своими руками.

Схема преобразователя

При помощи мультивибратора постоянный ток преобразуется в импульсный, с частотой 50 Гц. Затем повышающий трансформатор преобразует напряжение до уровня 220 вольт, на выходе монтируется стабилизатор.

Недостатком такой компоновки является большой размер и невозможность получить чистый синус. Но для простейших задач (работа зарядного устройства или паяльника) вполне сгодится. Главная задача, которую нужно решить – как намотать трансформатор для преобразователя. Подойдет тороидальный сердечник (для компактности) от любого ненужного блока питания.

Схема преобразователя

Понятное дело, во вторичной обмотке витков должно быть больше в соответствие с коэффициентом повышения. Мощность подобных устройств обычно не превышает 200 Вт.

Следующий тип преобразователей – на задающем генераторе. Обычно для этих целей используется микросхема КР1211ЕУ1. Главная деталь преобразователя отечественного производства, поэтому ее стоимость невысокая. После того, как генератор задаст переменное напряжение – сигнал уходит на ключи, выполненные на транзисторах IRL2505.

Схема преобразователя

Далее подключается повышающий трансформатор, на выходе которого сформировано переменное напряжение 220 вольт. Для снижения влияния высокочастотных импульсов, которые многократно усиливаются на вторичной обмотке – установлен подавляющий конденсатор.

Мощность преобразователя может достигать 500 Вт, в зависимости от трансформатора. Его подбирают с запасом, превышающим номинал в 2,5 раза. Нагрузка на остальные элементы не такая высокая. Например, при выходной мощности, не превышающей значение 200 Вт, ключевые транзисторы работают без радиаторов.

Схема настолько удачная, что ее применяют многие производители в промышленных преобразователях. А доступность элементной базы позволяет собрать преобразователь с 12 на 220 своими руками.

Более совершенными с технической точки зрения являются преобразователи на ШИМ контроллерах. Такие устройства на выходе дают чистый синус, а также имеют высокий КПД.

Схема преобразователя

Совершенная схема позволяет создать мощные устройства (1-2 кВт) при относительно компактных размерах. Габариты определяют радиаторы охлаждения и система вентиляции. Высокая стоимость элементной базы выводит прибор из разряда бюджетных.

Однако в сравнении с промышленными образцами, экономия при самостоятельной сборке существенная. Такой преобразователь осилит и питание холодильника. А качественная форма выходного сигнала позволит подключать требовательные потребители – телевизоры и музыкальные центры.

Важно! Не стоит забывать, что высокая выходная мощность преобразователя потребует емкого первичного источника электроэнергии. Для продолжительной работы при нагрузке 800-1000Ви, аккумуляторная батарея должна быть не менее 100 а/ч.

Однако наибольшим спросом все же пользуются компактные устройства, предназначенные для питания гаджетов поменьше. Схема преобразователя 12 220 на транзисторах доступна каждому радиолюбителю, умеющему держать в руках паяльник.

Схема преобразователя

Собрав такую схему в аккуратном корпусе, можно установить ее в автомобиле, и у вас будет настоящая бортовая розетка 220 вольт.

Лучший самодельный преобразователь:
Если у вас в компьютерном блоке бесперебойного питания приказала долго жить аккумуляторная батарея, у вас появляется прекрасный донор для создания автономного источника 220 вольт. Преобразователь из бесперебойника практически не требует вмешательства со стороны.

Достаточно подключить более мощную батарею (например, автомобильную) и преобразователь готов.
Изучив наш материал – вы сможете не только выбрать подходящий инвертор в магазине, но и сделать его самостоятельно.

Смотрите ниже: Преобразователь с 12 на 220 — видео, схема, подробная инструкция

Поделиться с друзьями:

*****

Как сделать инверторы (преобразователи) 12-220 В

Чтобы подключить к бортовой электросистеме автомобиля бытовые устройства требуется инвертор, который сможет повысить напряжение с 12 В до 220 В. На полках магазинов они имеются в достаточном количестве, но не радует их цена. Для тех, кто немного знаком с электротехникой есть возможность собрать преобразователь напряжения 12 220 вольт своими руками. Две простые схемы мы разберем.

Преобразователи и их типы

Есть три типа преобразователей 12-220 В. Первый — из 12 В получают 220 В. Такие инверторы популярный у автомобилистов: через них можно подключать стандартные устройства — телевизоры, пылесосы и т.д. Обратное преобразование — из 220 В в 12 — требуется нечасто, обычно в помещениях с тяжелыми условиями эксплуатации (повышенная влажность) для обеспечения электробезопасности. Например, в парилках, бассейнах или ванных. Чтобы не рисковать, стандартное напряжение в 220 В понижают до 12, используя соответствующее оборудование.

Схема преобразователя

Преобразователи напряжения есть в достаточном количестве в магазинах

Третий вариант — это, скорее, стабилизатор на базе двух преобразователей. Сначала стандартные 220 В преобразуются в 12 В, затем обратно в 220 В. Такое двойное преобразование позволяет иметь на выходе идеальную синусоиду. Такие устройства необходимы для нормальной работы большинства бытовой техники с электронным управлением. Во всяком случае, при установке газового котла настоятельно советуют запитать его именно через такой преобразователь — его электроника очень чувствительная к качеству питания, а замена платы управления стоит примерно как половина котла.

Импульсный преобразователь 12-220В на 300 Вт

Эта схема проста, детали доступны, большинство из них можно извлечь из блока питания для компьютера или купить в любом радиотехническом магазине. Достоинство схемы — простота реализации, недостаток — неидеальная синусоида на выходе и частота выше стандартных 50 Гц. То есть, к данному преобразователю нельзя подключать устройства, требовательные к электропитанию. К выходу напрямую можно подключать не особ чувствительные приборы — лампы накаливания, утюг, паяльник, зарядку от телефона и т.п.

Представленная схема в нормальном режиме выдает 1,5 А или тянет нагрузку 300 Вт, по максимуму — 2,5 А, но в таком режиме будут ощутимо греться транзисторы.

Схема преобразователя

Преобразователь напряжения 12 220 В: схема преобразователя на основе ШИМ-контролллера

Построена схема на популярном ШИМ-контроллере TLT494. Полевые транзисторы Q1 Q2 надо размещать на радиаторах, желательно — раздельных. При установке на одном радиаторе, под транзисторы уложить изолирующую прокладку. Вместо указанных на схеме IRFZ244 можно использовать близкие по характеристикам IRFZ46 или RFZ48.

Частота в данном преобразователе 12 В в 220 В задается резистором R1 и конденсатором C2. Номиналы могут немного отличаться от указанных на схеме. Если у вас есть старый нерабочий беспербойник для компьютера, а в нем — рабочий выходной трансформатор, в схему можно поставить его. Если трансформатор нерабочий, из него извлечь ферритовое кольцо и намотать обмотки медным проводом диаметром 0,6 мм. Сначала мотается первичная обмотка — 10 витков с выводом от середины, затем, поверх — 80 витков вторичной.

Как уже говорили, такой преобразователь напряжения 12-220 В может работать только с нагрузкой, нечувствительной к качеству питания. Чтобы была возможность подключать более требовательные устройства, на выходе устанавливают выпрямитель, на выходе которого напряжение близко к нормальному (схема ниже).

Схема преобразователя

Для улучшения выходных характеристик добавляют выпрямитель

В схеме указаны высокочастотные диоды типа HER307, но их можно заменить на серии FR207 или FR107. Емкости желательно подобрать указанной величины.

Инвертор на микросхеме

Этот преобразователь напряжения 12 220 В собирается на основе специализированной микросхемы КР1211ЕУ1. Это генератор импульсов, которые снимаются с выходов 6 и 4. Импульсы противофазные, между ними небольшой временной промежуток — для исключения одновременного открытия обоих ключей. Питается микросхема напряжением 9,5 В, который задается параметрическим стабилизатором на стабилитроне Д814В.

Также в схеме присутствуют два полевых транзистора повышенной мощности — IRL2505 (VT1 и VT2). Они имеют очень низкое сопротивление открытого выходного канала — около 0,008 Ом, что сравнимо с сопротивлением механического ключа. Допустимый постоянный ток — до 104 А, импульсный — до 360 А. Подобные характеристики реально позволяют получить 220 В при нагрузке до 400 Вт. Устанавливать транзисторы необходимо на радиаторы (при мощности до 200 Вт можно и без них).

Схема преобразователя

Схема повышающего преобразователя напряжения 12-220 В

Частота импульсов зависит от параметров резистора R1 и конденсатора C1, на выходе установлен конденсатор C6 для подавления высокочастотных выбросов.

Трансформатор лучше брать готовый. В схеме он включается наоборот — низковольтная вторичная обмотка служит как первичная, а напряжение снимается с высоковольтной вторичной.

Возможные замены в элементной базе:

  • Указанный в схеме стабилитрон Д814В можно заменить любым, выдающим 8-10 V. Например, КС 182, КС 191, КС 210.
  • Если нет конденсаторов C4 и C5 типа К50-35 на 1000 мкФ, можно взять четыре 5000 мкФ или 4700 мкФ и включить их параллельно,
  • Вместо импортного конденсатора C3 220m можно поставить отечественный любого типа на 100-500 мкФ и напряжение не ниже 10 В.
  • Трансформатор — любой с мощностью от 10 W до 1000 W, но его мощность должна быть минимум в два раза выше планируемой нагрузки.

При монтаже цепей подключения трансформатора, транзисторов и подключения к источнику 12 В надо использовать провода большого сечения — ток тут может достигать высоких значений (при мощности в 400 Вт до 40 А).

Инвертор с чистым синусом а выходе

Схемы денных преобразователей сложны даже для опытных радиолюбителей, так что сделать их своими руками совсем непросто. Пример самой простой схемы ниже.

Схема преобразователя

Схема инвертора 12 200 с чистым синусом на выходе

В данном случае проще собрать подобный преобразователь из готовых плат. Как — смотрите в видео.

В следующем ролике рассказано как собирать преобразователь на 220 вольт с чистым синусом. Только входное напряжение не 12 В, а 24 В.

А в этом видео как раз рассказано, как можно менять входное напряжение, но получать на выходе требуемые 220 В.

*****

Обзор схем преобразователей напряжения с 12 В на 220 В

Опубликовано вс, 02/14/2016 - 13:39 пользователем admin

Преобразователи напряжения c 12 В на 220 В: обзор схем и вариантов реализации

Преобразователи напряжения с 12 В на 220 В интересны всем, кто много ездит и проводит немало времени в машине. Приходится запитывать и заряжать ноутбук, коммуникатор, беспроводные наушники, сотовый телефон, порой нужен даже автомобильный холодильник (лучше, конечно, на 12 вольт, такие продаются). Такой преобразователь можно подключать к прикуривателю либо к аккумулятору. Подключать стоит к аккумулятору напрямую, поскольку в прикуривателе тоненькие провода, а при зарядке потребляется много тока. Для ноутбуков стоит иметь DC-DC инвертор, нет смысла преобразовывать 12 В в 220 В, включать в инвертор блок питания ноутбука, который опять 220 В преобразует в 19 В (питание ноутбука примерно такое). Но это вводная, перейдем к практике.

Простые маломощные схемы преобразователей на отечественной элементной базе

Надежная, но маломощная схема

Схема преобразователя

  • схема проверена, не подведёт;
  • если не нужна мощность, а зарядить телефон, и фонарики - то, что нужно;
  • не каждый блок бесперебойного питания будет работать в таком режиме.
  • малая мощность (50 Вт);
  • моральная старость.

Как работает схема преобразователя

В схеме три функциональные узла: задающий мультивибратор (вырабатывает импульсы 50 Гц, инвертор на выходе), двухтактный транзисторный ключевой усилитель мощности, повышающий трансформатор.

В основе мультивибратора - микросхема D1 (D1.1 + D1.2). Номиналы R1, С1 задают частоту мультивибратора. Инвертор - выход D1.4 микросхемы. Транзисторы VT3, VT4 усиливают мощность импульсов, которые принимает низковольтная обмотка транса Т1. Импульсным током низковольтной обмотки в высоковольтной обмотке наводится напряжение 220 В, его форма близка к синусоидальной. Повышающая обмотка и конденсатор С4 образуют контур, настроенный на частоту 50 Гц, это улучшает форму напряжения на выходе.

Микросхему К561ЛН2 можно заменить другими инверторами - микросхемами К561ЛА7, К561ЛЕ5. Серия К176 в этой схеме не рекомендуется.

Транзистор КТ973 может иметь любой буквенный индекс.

Транзистор КТ805, возможная замена – КТ819, буквенные индексы любые.

Повышающим трансформатором могут быть любые сетевые трансформаторы с мощностью 50-100 Вт, с первичной обмоткой 220 В, а две вторичные — 10-15 В в каждой (можно одну, имеющую в середине отвод на 20-30 В). При этом нужно помнить об обратном включении трансформатора!.

Транзисторам VT4 и VT3 нужны радиаторы для надежного теплоотвода

Источник: РадиоКонструктор №5/1999, стр. 27

Простая схема мощностью 110-130 Вт (75 Герц)

  • простая сборка;
  • надежен, не боится перегрузок и КЗ;
  • копеечная стоимость.

Недостатки. тяжелый и громоздкий.

В основе этой конструкции - схема простейшего преобразователя напряжения DC/AC, при соблюдении всех параметров налаживание не требуется, можно обойтись только паяльником. После подачи питания схема запускается сразу, не требует настройки (естественно, нужно замерить выходное напряжение). Используется общий коллектор, все транзисторы можно установить на один радиатор, изолирующие прокладки не нужны. Монтаж навесной.
Вариант 1:

Схема преобразователя

Схема преобразователя

  • резисторы - 5-10 Ом, 0.5 Вт;
  • резисторы силовой части — 5-10 Ом, 2 Вт;
  • конденсатор на выходе инвертора — 0.3-0.8 мкФ 400 В (не электролитический и не полярный);
  • транзисторы Т1 и Т2 - почти любые РпР структуры (КТ835, КТ837, КТ818, П213, П214, П215, П216, П217) или другие, близкие к ним по параметрам;
  • транзисторы Т3-Т6. Т10 - также РпР структуры (П210, П213-П217, КТ835Б, КТ837, КТ818, КТ818ГМ.

От выбора типа транзисторов силовой части инвертора будет зависеть выходная мощность инвертора. Лучший вариант — полевые транзисторы, но нужно заменить резисторы на более высокое сопротивление, подходящее под тип отобранного транзистора.

Задающий генератор собран на транзисторах Т1-Т2, 2-х резисторах и трансформаторе Тр1.

  • обмотки 1 и 4 – по 10 витков;
  • обмотки 2 и 3 – по 30 витков;
  • обмотки 5 и 6 – по 10 витков.

Все обмотки можно мотать проводом любой марки диаметром 0.4-0.5мм. Для лучшей синхронизации каналов желательно обмотки 1 и 4, 2 и 3, 5 и 6 мотать бифилярно, т.е. по 2 провода вместе.

Трансформатор ТР1 – ш-образный на железе с площадью сечения сердечника не менее 4см (если сечение окажется недостаточным,то задающий генератор запустится на высоких частотах,от 800Гц до 10-12Кгц,о чём подскажет высокочастотный писк трансформатора). Можно взять из чб лампового телевизора трансформатор ТВ-3Ш,он небольшого размера.

В зависимости от применяемых транзисторов и типа трансформатора частота и напряжение на обмотках 5 и 6 может измениться. Нормальным для работы силовой части инвертора будет напряжение 7-10 В.

При сборке задающего генератора номиналы элементов обоих каналов должны быть строго идентичны для обеспечения синхронной работы всего инвертора. Особое внимание нужно уделить правильной фазировке обмоток 1, 2, 3 и 4. Начала всех обмоток обозначены точками.

  • обмотка 3 намотана проводом диаметром 0,5-0.8мм,содержит 600 витков;
  • обмотки 1-2 – проводом диаметром 2мм, по 24 витка;

Можно использовать готовый сетевой трансформатор, имеющий 2 выхода по 12 вольт, просто подключив его "наоборот". Но в этом случае, возможно, придётся корректировать число витков вторичной обмотки 3. Выходная мощность будет зависеть от типа транзисторов, их количества и габаритной мощности трансформатора. Ну и номиналы элементов обоих каналов должны быть идентичны.

Осциллограмма импульсов инвертора на выходе:

Схема преобразователя

Схема преобразователя

Простой маломощный на двух транзисторах

Отечественная комплектация использована в следующей очень простой и надежной схеме преобразователя напряжения 12 В в 220 В (разрабатывалась для энергосберегающей лампы). Схема не требует наладки, в ней 2 транзистора, конденсатор, два резистора и трансформатор.

Схема преобразователя

Транзисторы подобраны для минимального тока потребления (КТ814 и КТ940), под них определены сопротивления и емкость, номиналы которых указаны на схеме.

Эта конструкция оптимальна для питания энергосберегающей лампы 8,9,11 Вт, потребление тока колеблется от 0.5 до 0.54 А.

Трансформатор сделан из ферритовых чашек диаметром 35 мм, высотой 20мм. Вначале наматывается первичная обмотка - 14 витков, провод диаметром 0,5 мм, после намотки она оборачивается изолентой в один слой. Вторичная обмотка - провод диаметром 0.2 мм, 220 витков, поверху также обмотка изолентой в один слой. Затем каркас с намоткой помещается в ферритовые чашки и садится на болтик.

Ниже показаны фотографии.

Схема преобразователя

Схема преобразователя

Намотанные катушки индуктивности.

Схема преобразователя

Схема преобразователя

Преобразователь питает энергосберегающую лампу.

Для просмотра схем более мощных преобразователей щелкните на цифре 2.

Схемы устройств большей мощности

Преобразователь мощностью до 400 Вт

Схема преобразователя

Схема состоит из задающего генератора (микросхема А1 — КР1211ЕУ1, зарубежного аналога не имеет — это задающий генератор с двумя выходами: прямым и инверсным, соответственно 4 и 6), двух ключей (полевики VT1 и VT2), трансформатора Т1 (повышающего).

Вывод 1, когда на него подается высокий уровень сигнала, останавливает генератор, в этой реализации не использован, в схеме на него подается сигнал постоянного низкого уровня.

Частота генерации определяется R1 – C1, надежный запуск генератора обеспечивают R2 – C2. Стабилизатор (элементы R3, VD1, C3, стабилизация 8-10 В) питает микросхему.

На выходе — двухтактный каскад: два мощных полевых транзистора IRL2505 (при нагрузке до 200 Вт радиаторы не требуются, если возможна большая нагрузка — радиаторы обязательны).

Трансформатором может быть какой-угодно сетевой с двумя обмоткми на 12 В требуемой мощности, лучше тороидальный, можно другой, но должно соблюдаться следующее условие: по мощности трансформатор должен превышать предполагаемую нагрузку в 2 (это если тороидальный сердечник) – 2.5 раза. Пример: если нагрузкой будут 100 Вт – нужна мощность 250 Вт, если тороидальный — 200 Вт.

Конденсатором С6 (он сглаживает импульс) — может быть К-73-17 либо подобный, напряжением 400 В или выше. Когда мощность потребления большая, ток с 12 В может превышать 40 А, вот почему на сечение и длину шины питания необходимо обратить внимание.

Мощный преобразователь напряжения с 12 В на 220 В

Предназначен для нагрузки до 1000 Вт, требующей переменного напряжения 220В. Использованы старые транзисторы П216, которые радиолюбители еще могут найти в своем хозяйстве.

Схема преобразователя

В качестве задающего генератора здесь используются транзисторы VT1, VT2 и трансформатор Т1 – задается частота 200 Гц. Вторичная обмотка Т1 сигнал через конденсаторы отправляет к электродам тиристоров VD1, VD2, которые создают импульсное напряжение в первой обмотке трансформатора Т2.

Неполярный конденсатор С4 (его емкость) подобран так, что его напряжение поочередно закрывает тиристоры. Резистором R3 защищаются цепи 12 В от перегрузки во время открывания тиристора.

У трансформатора Т1:

  • у сердечника – пластина Ш16Х10;
  • в обмотке 1 – 40+40 витков ПЭЛ 0.8;
  • в обмотке 2 – 10+10 витков ПЭЛ 0.3;
  • в обмотке 3 – 20+20 витков ПЭЛ 0.3.

В трансформаторе Т2:

  • в сердечнике – пластина Ш50Х60;
  • в обмотке 1 – 40+40 витков проводом 3 мм в диаметре;
  • в обмотке 2 – 460 витков, провод ПЭЛ 0.8.

Использование тиристоров КУ202 позволит собрать подобный преобразователь меньшей мощности.

Также можно применить новые кремниевые транзисторы, в этом случае требуется корректировка режима постоянного тока.

Схема инвертора мощностью 300 Вт

Ниже приведена уменьшенная схема, полноразмерная схема для более комфортного просмотра здесь.

Схема преобразователя

  • беспроблемная работа при нагрузке до 300 Вт;
  • возможна нагрузка до 650 Вт (при сильном нагреве проводов и падении напряжения до 190 В).
  • сложность, требуется импортная комплектация;
  • более высокая стоимость.

Трансформатором может послужить импульсный блок питания (нерабочий советский телевизор в самый раз). Нужно перемотать, сточить зазор на феррите (если из двух таких трансформаторов взять по одной половинке феррита, ничего точить не придется).

В трансформаторепреобразователя возможно использование двух колец, оба 40х25х11, склеенных вместе. Первичная – та же, что в ТПИ-3, вторичная – на 60 витков.

Первичная – в двух обмотках 3 повода на 0.8 у плеча – в одном плече 5 витков и во втором плече 5 витков.

Вторичная – два провода на 0.8. При наматывании используется метод проверки. Вначале половину вторичной — два провода 0.8 + изоляция, затем первичную два плеча, опять изоляция, еще раз вторичная – ее подгоняем для нужного вольтажа (230 В).

В качестве корпуса лучше использовать компьютерный блок питания АТХ, в нем есть кулер, который лучше оставить и применить для охлаждения при повышенной нагрузке. Ниже показаны фотографии сделанного устройства.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *