Схема импульсного блока питания

Принцип работы импульсных блоков питания. Схема импульсного блока питания

Блоки питания всегда являлись важными элементами любых электронных приборов. Задействованы данные устройства в усилителях, а также приемниках. Основной функцией блоков питания принято считать снижение предельного напряжения, которое исходит от сети. Появились первые модели только после того, как была изобретена катушка переменного тока.

Дополнительно на развитие блоков питания повлияло внедрение трансформаторов в схему устройства. Особенность импульсных моделей заключается в том, что в них применяются выпрямители. Таким образом, стабилизация напряжения в сети осуществляется несколько другим способом, чем в обычных приборах, где задействуется преобразователь.

Схема импульсного блока питания

Устройство блока питания

Если рассматривать обычный блок питания, который используется в радиоприемниках, то он состоит из частотного трансформатора, транзистора, а также нескольких диодов. Дополнительно в цепи присутствует дроссель. Конденсаторы устанавливаются разной емкости и по параметрам могут сильно отличаться. Выпрямители используются, как правило, конденсаторного типа. Они относятся к разряду высоковольтных.

Работа современных блоков

Первоначально напряжение поступает на мостовой выпрямитель. На этом этапе срабатывает ограничитель пикового тока. Необходимо это для того, чтобы в блоке питания не сгорел предохранитель. Далее ток проходит по цепи через специальные фильтры, где происходит его преобразование. Для зарядки резисторов необходимо несколько конденсаторов. Запуск узла происходит только после пробоя динистора. Затем в блоке питания осуществляется отпирание транзистора. Это дает возможность значительно снизить автоколебания.

При возникновении генерации напряжения задействуются диоды в схеме. Они соединены между собой при помощи катодов. Отрицательный потенциал в системе дает возможность запереть динистор. Облегчение запуска выпрямителя осуществляется после запирания транзистора. Дополнительно обеспечивается ограничение тока. Чтобы предотвратить насыщение транзисторов, имеется два предохранителя. Срабатывают они в цепи только после пробоя. Для запуска обратной связи необходим обязательно трансформатор. Подпитывают его в блоке питания импульсные диоды. На выходе переменный ток проходит через конденсаторы.

Схема импульсного блока питания

Особенности лабораторных блоков

Принцип работы импульсных блоков питания данного типа построен на активном преобразовании тока. Мостовой выпрямитель в стандартной схеме предусмотрен один. Для того чтобы убирать все помехи, используются фильтры в начале, а также в конце цепи. Конденсаторы импульсный лабораторный блок питания имеет обычные. Насыщение транзисторов происходит постепенно, и на диодах это сказывается положительно. Регулировка напряжения во многих моделях предусмотрена. Система защиты призвана спасать блоки от коротких замыканий. Кабели для них обычно используются немодульной серии. В таком случае мощность модели может доходить до 500 Вт.

Разъемы блока питания в системе чаще всего устанавливаются типа АТХ 20. Для охлаждения блока в корпусе монтируется вентилятор. Скорость вращения лопастей должна регулироваться при этом. Максимальную нагрузку блок лабораторного типа должен уметь выдерживать на уровне 23 А. При этом параметр сопротивления в среднем поддерживается на отметке 3 Ом. Предельная частота, которую имеет импульсный лабораторный блок питания, равна 5 Гц.

Схема импульсного блока питания

Как осуществлять ремонт устройств?

Чаще всего блоки питания страдают из-за сгоревших предохранителей. Находятся они рядом с конденсаторами. Начать ремонт импульсных блоков питания следует со снятия защитной крышки. Далее важно осмотреть целостность микросхемы. Если на ней дефекты не видны, ее можно проверить при помощи тестера. Чтобы снять предохранители, необходимо в первую очередь отсоединить конденсаторы. После этого их можно без проблем извлечь.

Для проверки целостности данного устройства осматривают его основание. Сгоревшие предохранители в нижней части имеют темное пятно, которое свидетельствует о повреждении модуля. Чтобы заменить данный элемент, нужно обратить внимание на его маркировку. Затем в магазине радиоэлектроники можно приобрести аналогичный товар. Установка предохранителя осуществляется только после закрепления конденсатов. Еще одной распространенной проблемой в блоках питания принято считать неисправности с трансформаторами. Представляют они собой коробки, в которых устанавливаются катушки.

Когда напряжение на устройство подается очень большое, то они не выдерживают. В результате целостность обмотки нарушается. Сделать ремонт импульсных блоков питания при такой поломке невозможно. В данном случае трансформатор, как и предохранитель, можно только заменить.

Сетевые блоки питания

Принцип работы импульсных блоков питания сетевого типа основан на низкочастотном снижении амплитуды помех. Происходит это благодаря использованию высоковольтных диодов. Таким образом, контролировать предельную частоту получается эффективнее. Дополнительно следует отметить, что транзисторы применяются средней мощности. Нагрузка на предохранители оказывается минимальная.

Резисторы в стандартной схеме используются довольно редко. Во многом это связано с тем, что конденсатор способен участвовать в преобразовании тока. Основной проблемой блока питания данного типа является электромагнитное поле. Если конденсаторы используются с малой емкостью, то трансформатор находится в зоне риска. В данном случае следует очень внимательно относиться к мощности устройства. Ограничители для пикового тока сетевой импульсный блок питания имеет, а находятся они сразу над выпрямителями. Их основной задачей является контроль рабочей частоты для стабилизации амплитуды.

Диоды в данной системе частично выполняют функции предохранителей. Для запуска выпрямителя используются только транзисторы. Процесс запирания, в свою очередь, необходим для активации фильтров. Конденсаторы также могут применяться разделительного типа в системе. В таком случае запуск трансформатора будет осуществляться намного быстрее.

Схема импульсного блока питания

Применение микросхем

Микросхемы в блоках питания применяются самые разнообразные. В данной ситуации многое зависит от количества активных элементов. Если используется более двух диодов, то плата должна быть рассчитана под входные и выходные фильтры. Трансформаторы также производятся разной мощности, да и по габаритам довольно сильно отличаются.

Заниматься пайкой микросхем самостоятельно можно. В этом случае нужно рассчитать предельное сопротивление резисторов с учетом мощности устройства. Для создания регулируемой модели используют специальные блоки. Такого типа системы делаются с двойными дорожками. Пульсации внутри платы будут происходить намного быстрее.

Преимущества регулируемых блоков питания

Принцип работы импульсных блоков питания с регуляторами заключается в применении специального контроллера. Данный элемент в цепи может изменять пропускную способность транзисторов. Таким образом, предельная частота на входе и на выходе значительно отличается. Настраивать по-разному можно импульсный блок питания. Регулировка напряжения осуществляется с учетом типа трансформатора. Для охлаждения прибора используют обычные куллеры. Проблема данных устройств, как правило, заключается в избыточном токе. Для того чтобы ее решить, применяют защитные фильтры.

Мощность приборов в среднем колеблется в районе 300 Вт. Кабели в системе используются только немодульные. Таким образом, коротких замыканий можно избежать. Разъемы блока питания для подключения устройств обычно устанавливают серии АТХ 14. В стандартной модели имеется два выхода. Выпрямители используются повышенной вольтности. Сопротивление они способны выдерживать на уровне 3 Ом. В свою очередь, максимальную нагрузку импульсный регулируемый блок питания воспринимает до 12 А.

Схема импульсного блока питания

Работа блоков на 12 вольт

Импульсный блок питания (12 вольт) включает в себя два диода. При этом фильтры устанавливаются с малой емкостью. В данном случае процесс пульсации происходит крайне медленно. Средняя частота колеблется в районе 2 Гц. Коэффициент полезного действия у многих моделей не превышает 78%. Отличаются также данные блоки своей компактностью. Связано это с тем, что трансформаторы устанавливаются малой мощности. В охлаждении при этом они не нуждаются.

Схема импульсного блока питания 12В дополнительно подразумевает использование резисторов с маркировкой Р23. Сопротивление они способны выдержать только 2 Ом, однако для прибора такой мощности достаточно. Применяется импульсный блок питания 12В чаще всего для ламп.

Как работает блок для телевизора?

Принцип работы импульсных блоков питания данного типа заключается в применении пленочных фильтров. Эти устройства способны справляться с помехами различной амплитуды. Обмотка дросселя у них предусмотрена синтетическая. Таким образом, защита важных узлов обеспечивается качественная. Все прокладки в блоке питания изолируются со всех сторон.

Трансформатор, в свою очередь, имеет отдельный куллер для охлаждения. Для удобства использования он обычно устанавливается бесшумным. Предельную температуру данные устройства выдерживают до 60 градусов. Рабочую частоту импульсный блок питания телевизоров поддерживает на уровне 33 Гц. При минусовых температурах данные устройства также могут использоваться, однако многое в этой ситуации зависит от типа применяемых конденсатов и сечения магнитопровода.

Модели устройств на 24 вольта

В моделях на 24 вольта выпрямители применяются низкочастотные. С помехами успешно справляться могут всего два диода. Коэффициент полезного действия у таких устройств способен доходить до 60%. Регуляторы на блоки питания устанавливаются довольно редко. Рабочая частота моделей в среднем не превышает 23 Гц. Сопротивление резисторы могут выдерживать только 2 Ом. Транзисторы в моделях устанавливаются с маркировкой ПР2.

Для стабилизации напряжения резисторы в схеме не используются. Фильтры импульсный блок питания 24В имеет конденсаторного типа. В некоторых случаях можно встретить разделительные виды. Они необходимы для ограничения предельной частоты тока. Для быстрого запуска выпрямителя динисторы применяются довольно редко. Отрицательный потенциал устройства убирается при помощи катода. На выходе ток стабилизируется благодаря запиранию выпрямителя.

Схема импульсного блока питания

Боки питания на схеме DA1

Блоки питания данного типа от прочих устройств отличаются тем, что способны выдерживать большую нагрузку. Конденсатор в стандартной схеме предусмотрен только один. Для нормальной работы блока питания регулятор используется. Устанавливается контроллер непосредственно возле резистора. Диодов в схеме можно встретить не более трех.

Непосредственно обратный процесс преобразования начинается в динисторе. Для запуска механизма отпирания в системе предусмотрен специальный дроссель. Волны с большой амплитудой гасятся у конденсатора. Устанавливается он обычно разделительного типа. Предохранители в стандартной схеме встречаются редко. Обосновано это тем, что предельная температура в трансформаторе не превышает 50 градусов. Таким образом, балластный дроссель со своими задачами справляется самостоятельно.

Модели устройств с микросхемами DA2

Микросхемы импульсных блоков питания данного типа среди прочих устройств выделяются повышенным сопротивлением. Используют их в основном для измерительных приборов. В пример можно привести осциллограф, который показывает колебания. Стабилизация напряжения для него является очень важной. В результате показатели прибора будут более точными.

Регуляторами многие модели не оснащаются. Фильтры в основном имеются двухсторонние. На выходе цепи транзисторы устанавливаются обычные. Все это дает возможность максимальную нагрузку выдерживать на уровне 30 А. В свою очередь, показатель предельной частоты находится на отметке 23Гц.

Блоки с установленными микросхемами DA3

Данная микросхема позволяет устанавливать не только регулятор, но и котроллер, который следит за колебаниями в сети. Сопротивление транзисторы в устройстве способны выдерживать примерно 3 Ом. Мощный импульсный блок питания DA3 с нагрузкой в 4 А справляется. Подсоединять вентиляторы для охлаждения выпрямителей можно. В результате устройства можно использовать при любой температуре. Еще одно преимущество заключается в наличии трех фильтров.

Два из них устанавливаются на входе под конденсаторами. Один фильтр разделительного типа имеется на выходе и стабилизирует напряжение, которое исходит от резистора. Диодов в стандартной схеме можно встретить не более двух. Однако многое зависит от производителя, и это следует учитывать. Основной проблемой блоков питания данного типа считается то, что они не способны справляться с низкочастотными помехами. В результате устанавливать их на измерительные приборы нецелесообразно.

Схема импульсного блока питания

Как работает блок на диодах VD1?

Данные блоки рассчитаны на поддержку до трех устройств. Регуляторы в них имеются трехсторонние. Кабели для связи устанавливаются только немодульные. Таким образом, преобразование тока происходит быстро. Выпрямители во многих моделях устанавливаются серии ККТ2.

Отличаются они тем, что энергию от конденсатора способны передавать на обмотку. В результате нагрузка от фильтров частично снимается. Производительность у таких устройств довольно высокая. При температурах свыше 50 градусов они также могут использоваться.

Схема импульсного блока питания

Что форма носа может сказать о вашей личности? Многие эксперты считают, что, посмотрев на нос, можно многое сказать о личности человека. Поэтому при первой встрече обратите внимание на нос незнаком.

Схема импульсного блока питания

Эти 10 мелочей мужчина всегда замечает в женщине Думаете, ваш мужчина ничего не смыслит в женской психологии? Это не так. От взгляда любящего вас партнера не укроется ни единая мелочь. И вот 10 вещей.

Схема импульсного блока питания

Никогда не делайте этого в церкви! Если вы не уверены относительно того, правильно ведете себя в церкви или нет, то, вероятно, поступаете все же не так, как положено. Вот список ужасных.

Схема импульсного блока питания

Неожиданно: мужья хотят, чтобы их жены делали чаще эти 17 вещей Если вы хотите, чтобы ваши отношения стали счастливее, вам стоит почаще делать вещи из этого простого списка.

Схема импульсного блока питания

Зачем нужен крошечный карман на джинсах? Все знают, что есть крошечный карман на джинсах, но мало кто задумывался, зачем он может быть нужен. Интересно, что первоначально он был местом для хр.

Схема импульсного блока питания

13 признаков, что у вас самый лучший муж Мужья – это воистину великие люди. Как жаль, что хорошие супруги не растут на деревьях. Если ваша вторая половинка делает эти 13 вещей, то вы можете с.

*****

Всё об импульсном блоке питания

Принцип реализации вторичной мощности за счёт применения дополнительных устройств, обеспечивающих энергией схемы, уже достаточно давно используется в большей части электроприборов. Этими устройствами являются блоки питания. Они служат для преобразования напряжения до необходимого уровня. БП могут быть как встроенными, так и отдельными элементами. Принципов преобразования электроэнергии существует два. Первый основан на применении аналоговых трансформаторов, а второй основан на использовании импульсных блоков питания. Разница между этими принципами довольно большая, но, к сожалению, не все её понимают. В этой статье разберёмся, как работает импульсный блок питания и чем же он так отличается от аналогового. Давайте же начнём. Поехали!

Схема импульсного блока питания

Плата импульсного блока питания

Первыми появились именно трансформаторные БП. Их принцип работы заключается в том, что они меняют структуру напряжения с помощью силового трансформатора, который подключён к сети 220 В. Там снижается амплитуда синусоидальной гармоники, которая направляется дальше к выпрямительному устройству. Затем происходит сглаживание напряжения параллельно подключенной ёмкостью, которая подбирается по допустимой мощности. Регулирование напряжения на выходных клеммах обеспечивается благодаря смене положения подстроечных резисторов.

Теперь перейдём к импульсным БП. Они появились несколько позже, однако, сразу завоевали немалую популярность за счёт ряда положительных особенностей, а именно:

  • Доступности комплектования;
  • Надёжности;
  • Возможности расширить рабочий диапазон для выходных напряжений.

Все устройства, в которых заложен принцип импульсного питания, практически ничем не отличаются друг от друга.

Схема импульсного блока питания

Элементами импульсного БП являются:

  • Линейный источник питания;
  • Источник питания Standby;
  • ТПИ;
  • Генератор (ЗПИ, управление);
  • Ключевой транзистор;
  • Оптопара;
  • Цепи управления.

Чтобы подобрать блок питания с конкретным набором параметров, воспользуйтесь сайтом ChipHunt.

Давайте, наконец, разберёмся, как работает импульсный блок питания. В нём применяются принципы взаимодействия элементов инверторной схемы и именно благодаря этому достигается стабилизированное напряжение.

Сперва на выпрямитель поступает обычное напряжение 220 В, далее происходит сглаживание амплитуды при помощи конденсаторов ёмкостного фильтра. После этого выполняется выпрямление проходящих синусоид выходным диодным мостом. Затем происходит преобразование синусоид в импульсы высоких частот. Преобразование может выполняться либо с гальваническим отделением сети питания от выходных цепей, либо без выполнения такой развязки.

Если БП с гальванической развязкой, то сигналы высокой частоты направляются на трансформатор, который и осуществляет гальваническую развязку. Для увеличения эффективности трансформатора повышается частота.

Работа импульсного БП основана на взаимодействии трёх цепочек:

  • ШИМ-контроллера (управляет преобразованием широтно-импульсной модуляции);
  • Каскада силовых ключей (состоит из транзисторов, которые включаются по одной из трёх схем: мостовой, полумостовой, со средней точкой);
  • Импульсного трансформатора (имеет первичную и вторичную обмотки, которые монтируются вокруг магнитопровода).

Схема импульсного блока питания

Если же блок питания без развязки, то ВСЧ разделительный трансформатор не используется, при этом сигнал подаётся сразу на фильтр низких частот.

Сравнивая импульсные блоки питания с аналоговыми, можно увидеть очевидные преимущества первых. ИБП имеют меньший вес, при этом их КПД значительно выше. Они имеют более широкий диапазон питающих напряжений и встроенную защиту. Стоимость таких БП, как правило, ниже.

Из недостатков можно выделить наличие высокочастотных помех и ограничений по мощности (как при высоких, так и при низких нагрузках).

Проверить ИБП можно при помощи обычной лампы накаливания. Обратите внимание, что не следует подключать лампу в разрыв удалённого транзистора, поскольку первичная обмотка не рассчитана на то, чтобы пропускать постоянный ток, поэтому ни в коем случае нельзя допускать его пропускания.

Схема импульсного блока питания

Если лампа светится, значит, БП работает нормально, если же не светится, то блок питания не работает. Короткая вспышка говорит о том, что ИБП блокируется сразу после запуска. Очень яркое свечение свидетельствует об отсутствии стабилизации выходного напряжения.

Теперь вы будете знать на чём основан принцип работы импульсного и обычного аналогового блоков питания. Каждый из них имеет свои особенности строения и работы, которые следует понимать. Также вы сможете проверить работоспособность ИБП при помощи обычной лампы накаливания. Пишите в комментариях была полезной для вас эта статья и задавайте любые интересующие вопросы по рассмотренной теме.

*****

Как сделать импульсный блок питания своими руками

Сфера применения импульсных блоков питания в быту постоянно расширяется. Такие источники применяются для питания всей современной бытовой и компьютерной аппаратуры, для реализации источников бесперебойного электропитания, зарядных устройств для аккумуляторов различного назначения, реализации низковольтных систем освещения и для других нужд.

В некоторых случаях покупка готового источника питания мало приемлема с экономической или технической точки зрения и сборка импульсного источника собственными руками является оптимальным выходом из такой ситуации. Упрощает такой вариант и широкая доступность современной элементной базы по низким ценам.

Структурная схема импульсного источника питания

Наиболее востребованными в быту являются импульсные источники с питанием от стандартной сети переменного тока и мощным низковольтным выходом. Структурная схема такого источника показана на рисунке.

Схема импульсного блока питания

Сетевой выпрямитель СВ преобразует переменное напряжение питающей сети в постоянное и осуществляет сглаживание пульсаций выпрямленного напряжения на выходе. Высокочастотный преобразователь ВЧП осуществляет преобразование выпрямленного напряжения в переменное или однополярное напряжение. имеющее форму прямоугольных импульсов необходимой амплитуды.

В дальнейшем такое напряжение либо непосредственно, либо после выпрямления (ВН) поступает на сглаживающий фильтр, к выходу которого подключается нагрузка. Управление ВЧП осуществляется системой управления, получающей сигнал обратной связи от выпрямителя нагрузки.

Такая структура устройства может быть подвергнута критике из-за наличия нескольких звеньев преобразования, что снижает КПД источника. Однако, при верном выборе полупроводниковых элементов и качественном расчете и изготовлении моточных узлов, уровень потерь мощности в схеме мал, что позволяет получать реальные значения КПД выше 90%.

Принципиальные схемы импульсных блоков питания

Решения структурных блоков включают не только обоснование выбора вариантов схемной реализации, но и практические рекомендации по выбору основных элементов.

Сетевой выпрямитель с фильтром

Для выпрямления сетевого однофазного напряжения используют одну из трех классических схем изображенных на рисунке:

  • однополупериодную;
  • нулевую (двухполупериодную со средней точкой);
  • двхполупериодную мостовую.

Схема импульсного блока питания

Каждой из них присущи достоинства и недостатки, которые определяют область применения.

Однополупериодная схема отличается простотой реализации и минимальным количеством полупроводниковых компонентов. Основными недостатками такого выпрямителя являются значительная величина пульсации выходного напряжения (в выпрямленном присутствует лишь одна полуволна сетевого напряжения) и малый коэффициент выпрямления.

Коэффициент выпрямления Кв определяется соотношением среднего значения напряжения на выходе выпрямителя Udк действующему значению фазного сетевого напряжения .

Для однополупериодной схемы Кв=0.45.

Для сглаживания пульсации на выходе такого выпрямителя требуются мощные фильтры.

Нулевая, или двухполупериодная схема со средней точкой. хоть и требует удвоенного числа выпрямительных диодов, однако, этот недостаток в значительной мере компенсируется более низким уровнем пульсаций выпрямленного напряжения и ростом величины коэффициента выпрямления до 0.9.

Основным недостатком такой схемы для использования в бытовых условиях является необходимость организации средней точки сетевого напряжения, что подразумевает наличие сетевого трансформатора. Его габариты и масса оказываются несовместимыми с идеей малогабаритного самодельного импульсного источника.

Двухполупериодная мостовая схема выпрямления имеет те же показатели по уровню пульсации и коэффициенту выпрямления, что и нулевая схема,но не требует наличия сетевого трансформатора. Это компенсирует и главный недостаток – удвоенное количество выпрямительных диодов как с точки зрения КПД, так и по стоимости.

Для сглаживания пульсаций выпрямленного напряжения наилучшим решением является использование емкостного фильтра. Его применение позволяет поднять величину выпрямленного напряжения до амплитудного значения сетевого (при Uф=220В Uфм=314В). Недостатками такого фильтра принято считать большие величины импульсных токов выпрямительных элементов, но критичным этот недостаток не является.

Выбор диодов выпрямителя осуществляется по величине среднего прямого тока Ia и максимального обратного напряжения UBM .

Приняв величину коэффициента пульсации выходного напряжения Кп=10%, получим среднее значение выпрямленного напряжения Ud=300В. С учетом мощности нагрузки и КПД ВЧ преобразователя (для расчета принимается 80%, но на практике получится выше, это позволит получить некоторый запас).

Схема импульсного блока питания

Ia – средний ток диода выпрямителя, Рн- мощность нагрузки, η – КПД ВЧ преобразователя.

Максимальное обратное напряжение выпрямительного элемента не превышает амплитудного значения напряжения сети (314В), что позволяет использовать компоненты с величиной UBM =400В со значительным запасом. Использовать можно как дискретные диоды, так и готовые выпрямительные мосты от различных производителей.

Для обеспечения заданной (10%) пульсации на выходе выпрямителя емкость конденсаторов фильтра принимается из расчета 1мкФ на 1Вт выходной мощности. Используются электролитические конденсаторы с максимальным напряжением не менее 350В. Емкости фильтров для различных мощностей приведены в таблице.

Схема импульсного блока питания

Высокочастотный преобразователь: его функции и схемы

Высокочастотный преобразователь представляет собой однотактный или двухтактный ключевой преобразователь (инвертор) с импульсным трансформатором. Варианты схем ВЧ преобразователей приведены на рисунке.

Схема импульсного блока питания

Однотактная схема. При минимальном количестве силовых элементов и простоте реализации имеет несколько недостатков.

  1. Трансформатор в схеме работает по частной петле гистерезиса, что требует увеличения его размеров и габаритной мощности;
  2. Для обеспечения мощности на выходе необходимо получить значительную амплитуду импульсного тока, протекающего через полупроводниковый ключ.

Схема нашла наибольшее применение в маломощных устройствах, где влияние указанных недостатков не столь значительно.

Схема импульсного блока питания Чтобы самостоятельно поменять или установить новый счетчик, не требуется особых навыков. Выбор правильной схемы подключения электросчетчика обеспечит корректный учет потребляемого тока и повысит безопасность домашней электросети.

В современных условиях обеспечения освещения как внутри помещений, так и на улице все чаще используют датчики движения. Это придает не только комфорт и удобства в наши жилища, но и позволяет существенно экономить. Узнать практические советы по выбору места установки, схем подключения можно здесь.

Двухтактная схема со средней точкой трансформатора (пушпульная). Получила свое второе название от английского варианта (push-pull) описания работы. Схема свободна от недостатков однотактного варианта, но имеет собственные – усложненная конструкция трансформатора (требуется изготовление идентичных секций первичной обмотки) и повышенные требования к максимальному напряжению ключей. В остальном решение заслуживает внимания и широко применяется в импульсных источниках питания, изготавливаемых своими руками и не только.

Двухтактная полумостовая схема. По параметрам схема аналогична схеме со средней точкой, но не требует сложной конфигурации обмоток трансформатора. Собственным недостатком схемы является необходимость организации средней точки фильтра выпрямителя, что влечет четырехкратное увеличение количества конденсаторов.

Благодаря простоте реализации схема наиболее широко используется в импульсных источниках питания мощностью до 3 кВт. При больших мощностях стоимость конденсаторов фильтра становится неприемлемо высокой по сравнению с полупроводниковыми ключами инвертора и наиболее выгодной оказывается мостовая схема.

Двухтактная мостовая схема. По параметрам аналогична другим двухтактным схемам, но лишена необходимости создания искусственных «средних точек». Платой за это становится удвоенное количество силовых ключей, что выгодно с экономической и технической точек зрения для построения мощных импульсных источников.

Выбор ключей инвертора осуществляется по амплитуде тока коллектора (стока) IКМАХ и максимальному напряжению коллектор-эмиттер UКЭМАХ. Для расчета используются мощность нагрузки и коэффициент трансформации импульсного трансформатора.

Однако, прежде необходимо рассчитать сам трансформатор. Импульсный трансформатор выполняется на сердечнике из феррита, пермаллоя или витого в кольцо трансформаторного железа. Для мощностей до единиц кВт вполне подойдут ферритовые сердечники кольцевого или Ш-образного типа. Расчет трансформатора ведется исходя из требуемой мощности и частоты преобразования. Для исключения появления акустического шума частоту преобразования желательно вынести за пределы звукового диапазона (сделать выше 20 кГц).

При этом необходимо помнить, что при частотах близких к 100 кГц значительно возрастают потери в ферритовых магнитопроводах. Сам расчет трансформатора не составляет труда и легко может быть найден в литературе. Некоторые результаты для различных мощностей источников и магнитопроводов приведены в таблице ниже.

Расчет произведен для частоты преобразования 50 кГц. Стоит обратить внимание, что при работе на высокой частоте имеет место эффект вытеснения тока к поверхности проводника, что приводит к снижению эффективной площади сечения проводов обмотки. Для предотвращения подобного рода неприятностей и снижения потерь в проводниках необходимо выполнять обмотку из нескольких жил меньшего сечения. При частоте 50 кГц допустимый диаметр провода обмотки не превышает 0.85 мм.

Параметры импульсных трансформаторов и ключей ВЧ-преобразователя

Схема импульсного блока питания

Зная мощность нагрузки и коэффициент трансформации можно рассчитать ток в первичной обмотке трансформатора и максимальный ток коллектора силового ключа. Напряжение на транзисторе в закрытом состоянии выбирается выше, чем выпрямленное напряжение, поступающее на вход ВЧ-преобразователя с некоторым запасом (UКЭМАХ >=400В). По этим данным производится выбор ключей. В настоящее время наилучшим вариантом является использование силовых транзисторов IGBT или MOSFET.

Для диодов выпрямителя на вторичной стороне необходимо соблюдать одно правило – их максимальная рабочая частота должна превышать частоту преобразования. В противном случае КПД выходного выпрямителя и преобразователя в целом значительно снизятся.

Выполнение приведенных рекомендаций дает возможность в кратчайшие сроки и с минимумом проблем и затрат собрать силовую часть высокочастотного импульсного преобразователя для бытовых нужд.

Видео о изготовлении простейшего импульсного питающего устройства

*****

Как работает простой и мощный импульсный блок питания

Предлагаем рассмотреть, что такое импульсный блок питания (ИБП), как он работает, а также как сделать это устройство в домашних условиях.

Общая информация о ИБП

ИБП — это устройство, которое выпрямляет сетевое напряжение, а затем формирует из него импульсы частотой более 10 кГц, которые после подаются на специальный импульсный трансформатор.

ИБП представляет собой электронный преобразователь, который включает в себя импульсный регулятор, для эффективного преобразования электрической энергии и широтно-импульсный модулятор (ШИМ). Как и другие источники питания, ИБП передает мощность от источника электросети к нагрузке, в это время преобразовывая напряжение.

Схема импульсного блока питания

Схема — Импульсный блок питания

В идеале, импульсный блок питания не рассеивает никакой энергии. В противоположность этому, линейный источник питания регулируя выходное напряжение, непрерывно рассеивает энергию на p-n переходе транзистора. Таким образом высокая эффективность преобразования является важным преимуществом импульсного источника питания перед линейным. Кроме того, любой простой импульсный блок питания гораздо более компактен, чем трансформаторный с линейным стабилизатором, но при этом не уступает по эффективности.

Схема импульсного блока питания

Фото — Сетевой импульсный блок питания

Импульсные блоки питания используются в качестве замены линейных, так как имеют меньший размер и вес при схожей эффективности.

Видео: как сделать простой блок питания (импульсный)

Принцип действия

Рассмотрим по циклам принцип работы простого импульсного блока питания.

Если ИБП имеет входное напряжение переменного тока к примеру, в компьютере, ПК, ноутбуке, то первый этап заключается в преобразовании входящего переменного напряжения в постоянный. Блок питания с входом, рассчитанным входное напряжение постоянного тока не требует этой стадии. В некоторых блоках питания, например компьютерных, электрическая схема выпрямителя может быть сконфигурирована, как у удвоителя напряжения путем добавления переключателя управляемого вручную или автоматически. Эта функция позволяет работать источникам питания от сети которая обычно выдает 115 В или 230 В.

Выпрямитель сглаживает нерегулируемое переменное напряжение в постоянное, которое затем отправляется в накопительный конденсаторный фильтр. Ток, потребляемый от источника питания этой цепи (выпрямителя) трансформируется в короткие импульсы вокруг пиков напряжения переменного тока.

Данные сигналы имеют значительную энергию высокой частоты, которая уменьшает коэффициент мощности импульсного трансформатора, за счет чего удается уменьшить его габариты. Для коррекции этого явления многие новые ИБП используют специальную PFC схему, чтобы заставить входной ток следовать синусоидальной форме входного напряжения переменного тока и для коррекции коэффициента мощности. Импульсные источники питания, которые используют Active PFC – встречаются в камерах видеонаблюдения, компьютерах, и т. п. поддерживающие входное напряжение от

100 Вольт переменного тока до 250 В.

Импульсный обратноходовый блок питания предназначен для входа переменного напряжения, как правило, так же он может работать и от источника постоянного тока, так как постоянное напряжение будет проходить через мостовой или полумостовой выпрямитель без изменений. Если блок питания предназначен для 115 В и не имеет переключателя напряжения, то требуется напряжение 163 В постоянного тока (115 × √2).

Но этот тип использования может быть вредным для выпрямителя, т.к. он будет использовать половину диодов в выпрямителе для полной нагрузки. Это может привести к перегреву одного из составляющих выпрямителя, из-за чего значительно понижается его долговечность. С другой стороны, если источник питания имеет переключатель режимов входного напряжения 115/230В (компьютерный AT-АТХ блок питания Panasonic, Samsung, dvd-привод Vbulletin), переключатель должен быть установлен в положение 230, и получать требуемое напряжение 325 В постоянного тока (230×√2).

Диоды в этом типе питания будут отлично выпрямлять переменное напряжение, потому что они, по своим характеристикам повторяют двухполярный удвоитель напряжения. Единственным недостатком такого простого блока является его недолговечность.

После того как сетевое напряжение стало выпрямленным оно поступает на инвертор.

Инвертор импульсного блока питания преобразовывает постоянный ток в переменный, запустив его через коммутатор напряжения, чья выходная энергия трансформации очень небольшая, с несколькими десятками витков обмотки трансформатора на частоте десятков или сотен килогерц, он работает как УНЧ. Частота обычно выбирается выше 20 кГц, чтобы сделать её не слышной для человека. Коммутация выполнена в виде многоступенчатого сигнала ШИМ на ключевых MOSFET транзисторах. MOSFET транзисторы представляют собой тип устройств с низким сопротивлением открытого перехода и высокой способностью прохождения больших токов.

Схема импульсного блока питания

Фото — Принцип работы импульсного блока питания

Если выходы должны быть изолированы от входа, как это обычно бывает в сетевых источниках питания, инвертированный переменный ток используется для питания первичной обмотке высокочастотного трансформатора. Трансформатор уже повышает или понижает напряжение на вторичной обмотке до необходимого уровня. На блок-схеме это видно на выходе трансформатора.

Схема импульсного блока питания

Фото — Принципиальная схема источника питания

Для выходных напряжений выше десяти вольт используются кремниевые диоды. При более низких напряжениях, обычно используются диоды Шоттки в качестве элементов выпрямителя; они имеют преимущества :

  1. Более быстрое время восстановления, чем у кремниевых диодов (позволяет работать с малыми потерями на высоких частотах);
  2. Низкое падение напряжения при прохождении тока. Для еще более низких выходных напряжений, малогабаритные ИБП используют транзистор в качестве синхронных выпрямителей, в таком случае именно в транзисторе происходят основное выпрямление переменного напряжения..

Затем производится сглаживание с помощью фильтра, состоящего из дросселя и конденсатора. При более высоких частотах коммутации, необходимы компоненты с более низкой емкостью и индуктивностью.

Схема импульсного блока питания

Фото — Миниатюрный импульсный блок

Более простой неизолированный импульсный источник питания содержит дроссель вместо трансформатора. К такому типу относятся повышающие и понижающие преобразователи. Они принадлежат к простейшему классу с одним входом и одним выходом, которые используют один дроссель и один активный переключатель.

Как сделать блок питания своими руками

Собрать средне-мощный или маломощный импульсный блок питания своими руками для портативного телевизора или планшетного компьютера можно в домашних условиях.

Пошаговое описание. как сделать миниатюрный универсальный самодельный ИБП, который подойдет для настольной светодиодной лампы, приемника, музыкального плеера:

  1. Выберите зарядное устройство, которое может обеспечить достаточный ток для зарядки аккумулятора. Проверьте преобразователи, предназначенные для работы больших внедорожников, если делаете сложную систему.

Схема импульсного блока питания

Фото — Схема простого ИБП

Проверьте солнечные источники питания для домов и инверторы для больших систем. Убедитесь, что контакты зарядного устройства способны передать мощность для питания вашей нагрузки.

  1. Выберите батареи глубокого цикла. Не используйте автомобильный аккумулятор. Если вы будете использовать гелевые или необслуживаемые батареи, то система буде работать исправно. Для более крупных систем, состоящих из нескольких батарей глубокого цикла, нужно выбирать только AGM или аккумуляторы с жидким электролитом.

Убедитесь, что батареи вентилируются для выхода водорода. Если вы покупаете аккумуляторы с жидким электролитом, убедитесь, что устройство поддерживает выравнивание плотности заряда. Свинцово-кислотные батареи продаются номиналом 6 и 12 вольт. Вам нужно будет соединить их последовательно, чтобы поднять напряжение, или параллельно, чтобы увеличить мощность ампер-часов.

Схема импульсного блока питания

Фото — Источник питания с аккумуляторами

Расчет аккумуляторов для импульсных блоков питания с контроллером заряда и без него:

12 вольт = 2x6V – необходимо два 6 вольтовых аккумулятора, соединенных последовательно;

24 вольт = 4x6V или 2x12V батареи в последовательном соединении.

Не смешивайте разные типы батарей. Новые батареи, добавленные в существующий комплект будет способствовать снижению заряда первичных.

  1. Выберите инвертор. Необходимо купить однотактный или двухтактный повышающий инвертор. Мощность инвертора в ваттах, должна быть в 3-7раз больше, чем у номинального тока нагрузки. Инверторы доступны для входных напряжений от 12, 24, 36, 48 и до 96 вольт. Чем выше напряжение, тем лучше, особенно для больших систем. 12 вольт является наиболее распространенным, но ни в коем случае нельзя рассматривать 12 вольт для системы больше, чем 2400 Вт мощности.
  1. При помощи кабелей соедините инвертор, аккумулятор и прочие приборы.Для соединения деталей необходимо брать не тяжелые провода, чтобы они не тянули контакты.Обязательно проверяйте связь при помощи мультиметра.
  1. Отметив полярность на проводах, надежно прикрепите силовой кабель к батарее аккумуляторов и к контроллеру заряда ,это можно сделать с использованием паяльника. При помощи мультиметра проверьте все соединения проводников.
  1. Подготовьте систему зарядки. Подключите зарядное устройство к сети и включите его.
  1. Теперь нужно провести наладку системы импульсного блока питания, рассмотрим, как проверить инвертор. Прикрепите и подключите прибор, если он расположен отдельно от зарядного устройства. Подключите кабели к батареям, отметив полярность. Включите инвертор, и проверьте показания прибора с разными нагрузками переменного тока.

Главные признаки неисправности импульсного блока:

Оставьте инвертор на ночь с нагрузкой, аналогичной планируемой, и батарею заряжаться на всю ночь. Утром, батарея должна быть полностью заряжена.

  1. Теперь нужно создать защитный шкаф. Можно просто переделать готовый кожух от сгоревшей аппаратуры, смонтировать его с наличием светодиодных или галогеновых лампочек, это практически бесплатно и эффективно.

Схема импульсного блока питания

Фото — Источник бесперебойного питания в боксе

Самодельные импульсные блоки питания проще всего переделывать с уже готовых, на микросхема ШИМ серии IR2151, TL431, UC3842 с автоматическим управлением (регулировкой), их схемотехника идеально подходит для данной работы.

Главное условие – работать с защитой! Нужно надевать перчатки, очки, защитные маски.

Конечно, для работы DVD плеера или лампы освещения можно приобрести дешевый китайский прибор. Но для полевых работ лучше купить импульсный блок питания на 12 В (как для ПК) на микросхемах IR2153, TL494. его цена довольна приемлема, а схема работы универсальна. Найти прибор можно в любом электротехническом магазине Вашего города.

Также обратите внимание на модели на микросхемах таких фирм как: model APC, Logicpower, CyberPower, FSP, Dyno, Eaton, Robiton, PSU, PSS, TOP, Samsung. Регулярно проводите плановый ремонт техники, платы должны проверятся каждые полгода.

*****

Описание работы импульсного БП

Схема импульсного стабилизатора ненамного сложней обычного, используемого в трансформаторных блоках питания, но более сложная в настройке.

Поэтому недостаточно опытным радиолю­бителям, не знающим правил работы с высоким напряжением (в частности, никогда не работать в одиночку и никогда не настраивать включенное уст­ройство двумя руками — только одной!), не рекомендую повторять эту схему.

На рис. 1 представлена электрическая схема импульсного стабилизатора напряжения для зарядки сотовых телефонов.

Рис. 1 Электрическая схема импульсного стабилизатора напряжения

Схема представляет собой блокинг-генератор, реализованный на транзисторе VT1 и трансформаторе Т1. Диодный мост VD1 выпрямляет переменное сете­вое напряжение, резистор R1 ограничивает импульс тока при включении, а также выполняет функцию предохранителя. Конденсатор С1 необязателен, но благодаря ему блокинг-генератор работает более стабильно, а нагрев транзи­стора VT1 чуть меньше (чем без С1).

При включении питания транзистор VT1 слегка приоткрывается через рези­стор R2, и через обмотку I трансформатора Т1 начинает течь небольшой ток. Благодаря индуктивной связи, через остальные обмотки также начинает протекать ток. На верхнем (по схеме) выводе обмотки II положительное напряжение небольшой величины, оно через разряженный конденсатор С2 приоткрывает транзистор еще сильней, ток в обмотках трансформатора нарастает, и в итоге транзистор открывается полностью, до состояния насыщения.

Через некоторое время ток в обмотках перестает нарастать и начинает снижаться (транзистор VT1 все это время полностью открыт). Уменьшается напряжение на обмотке II, и через конденсатор С2 уменьшается напряжение на базе транзистора VT1. Он начинает закрываться, амплитуда напряжения в обмотках уменьшается еще сильней и меняет полярность на отрицательную.

Затем транзистор полностью закрывается. Напряжение на его коллекторе увеличивается и становится в несколько раз больше напряжения питания (индуктивный выброс), однако благодаря цепочке R5, С5, VD4 оно ограничивается на безопасном уровне 400. 450 В. Благодаря элементам R5, С5 генерация нейтрализуется не полностью, и через некоторое время полярность напряжения в обмотках снова меняется (по принципу действия типичного колебательного контура). Транзистор снова начинает открываться. Так продолжается до бесконечности в цикличном режиме.

На остальных элементах высоковольтной части схемы собраны регулятор напряжения и узел защиты транзистора VT1 от перегрузок по току. Резистор R4 в рассматриваемой схеме выполняет роль датчика тока. Как только паде­ние напряжения на нем превысит 1. 1,5 В, транзистор VT2 откроется и замк­нет на общий провод базу транзистора VT1 (принудительно закроет его). Конденсатор СЗ ускоряет реакцию VT2. Диод VD3 необходим для нормаль­ной работы стабилизатора напряжения.

Стабилизатор напряжения собран на одной микросхеме - регулируемом стабилитроне DА1.

Для гальванической развязки выходного напряжения от сетевого использует­ся оптрон VOL Рабочее напряжение для транзисторной части оптрона берет­ся от обмотки II трансформатора Т1 и сглаживается конденсатором С4. Как только напряжение на выходе устройства станет больше номинального, через стабилитрон DA1 начнет течь ток, светодиод оптрона загорится, сопротивле­ние коллектор-эмиттер фототранзистора VOL2 уменьшится, транзистор VT2 приоткроется и уменьшит амплитуду напряжения на базе VT1.

Он будет сла­бее открываться, и напряжение на обмотках трансформатора уменьшится. Если же выходное напряжение, наоборот, станет меньше номинального, то фототранзистор будет полностью закрыт и транзистор VT1 будет "раскачиваться" в полную силу. Для защиты стабилитрона и светодиода от перегрузок по току, последовательно с ними желательно включить резистор сопротивле­нием 100. 330 Ом.

Налаживание
Первый этап: первый раз включать устройство в сеть рекомендуется через лампу 25 Вт, 220 В, и без конденсатора С1. Движок резистора R6 устанавли-вают в нижнее (по схеме) положение. Устройство включают и сразу отклю­чают, после чего как можно быстрей измеряют напряжения на конденсаторах С4 и Сб. Если на них есть небольшое напряжение (согласно полярности!), значит, генератор запустился, если нет генератор не работает, требуется поиск ошибки на плате и монтаже. Кроме того, желательно проверить тран­зистор VT1 и резисторы R1, R4.

Если все правильно и ошибок нет, но генератор не запускается, меняют мес­тами выводы обмотки II (или I, только не обоих сразу!) и снова проверяют работоспособность.

Второй этап: включают устройство и контролируют пальцем (только не за металлическую площадку для теплоотвода) нагрев транзистора VTI, он не должен нагреваться, лампочка 25 Вт не должна светиться (падение напряже­ния на ней не должно превышать пары Вольт).

Подключают к выходу устройства какую-нибудь маленькую низковольтную лампу, например, рассчитанную на напряжение 13,5 В. Если она не светится, меняют местами выводы обмотки III.

И в самом конце, если все нормально работает, проверяют работоспособность регулятора напряжения, вращая движок подстроечного резистора R6. После этого можно впаивать конденсатор С1 и включать устройство без лампы-токоограничителя.

Минимальное выходное напряжение составляет около 3 В (минимальное па­дение напряжения на выводах DA1 превышает 1,25 В, на выводах светодио­да—1,5В).
Если нужно меньшее напряжение, заменяют стабилитрон DA1 резистором сопротивлением 100. 680 Ом. Следующим шагом настройки требуется уста­новка на выходе устройства напряжения 3,9. 4,0 В (для литиевого аккумуля­тора). Данное устройство заряжает аккумулятор экспоненциально умень­шающимся током (от примерно 0,5 А в начале заряда до нуля в конце (для литиевого аккумулятора емкостью около 1 А/ч это допустимо)). За пару ча­сов режима зарядки аккумулятор набирает до 80 % своей емкости.

О деталях
Особый элемент конструкции — трансформатор.
Трансформатор в этой схеме можно использовать только с разрезным ферри-товым сердечником. Рабочая частота преобразователя довольно велика, поэтому для трансформаторного железа нужен только феррит. А сам преоб­разователь — однотактный, с постоянным подмагничиванием, поэтому сер­дечник должен быть разрезным, с диэлектрическим зазором (между его поло­винками прокладывают один-два слоя тонкой трансформаторной бумаги).

Лучше всего взять трансформатор от ненужного или неисправного анало­гичного устройства. В крайнем случае его можно намотать самому: сечение сердечника 3. 5 мм2, обмотка I-450 витков проводом диаметром 0,1 мм, обмотка II-20 витков тем же проводом, обмотка III-15 витков прово­дом диаметром 0,6. 0,8 мм (для выходного напряжения 4. 5 В). При намот­ке требуется строгое соблюдение направления намотки, иначе устройство будет плохо работать, или не заработает совсем (придется прикладывать усилия при налаживании — см. выше). Начало каждой обмотки (на схеме) вверху.

Транзистор VT1 — любой мощностью 1 Вт и больше, током коллектора не менее 0,1 А, напряжением не менее 400 В. Коэффициент усиления по току Ь2ь должен быть больше 30. Идеально подходят транзисторы MJE13003, KSE13003 и все остальные типа 13003 любой фирмы. В крайнем случае, при­меняют отечественные транзисторы КТ940, КТ969. К сожалению, эти транзи­сторы рассчитаны на предельное напряжение 300 В, и при малейшем повы­шении сетевого напряжения выше 220 В они будут пробиваться. Кроме того, они боятся перегрева, т. е. требуется их установка на теплоотвод. Для транзи­сторов KSE13003 и МГС13003 теплоотвод не нужен (в большинстве случаев цоколевка — как у отечественных транзисторов КТ817).

Транзистор VT2 может быть любым маломощным кремниевым, напряжение на нем не должно превышать 3 В; это же относится и к диодам VD2, VD3. Конденсатор С5 и диод VD4 должны быть рассчитаны на напряжение 400. 600 В, диод VD5 должен быть рассчитан на максимальный ток нагрузки. Диодный мост VD1 должен быть рассчитан на ток 1 А, хотя потребляемый схемой ток не превышает сотни миллиампер — потому что при включении происходит довольно мощный бросок тока, а увеличивать сопротивление ре­зистора Шдля ограничения амплитуды этого броска нельзя — он будет силь­но нагреваться.

Вместо моста VD1 можно поставить 4 диода типа 1N4004. 4007 или КД221 с любым буквенным индексом. Стабилизатор DA1 и резистор R6 можно заме­нить на стабилитрон, напряжение на выходе схемы будет на 1,5 В больше напряжения стабилизации стабилитрона.

"Общий" провод показан на схеме только для упрощения графики, его нельзя заземлять и (или) соединять с корпусом устройства. Высоковольтная часть устройства должна быть хорошо изолирована.

Оформление
Элементы устройства монтируют на плате из фольгированного стеклотексто­лита в пластмассовый (диэлектрический) корпус, в котором просверливают два отверстия для индикаторных светодиодов. Хорошим вариантом (использованным автором) является оформление платы устройства в корпус от ис­пользованной батареи типа А3336 (без понижающего трансформатора).

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *