Симисторный регулятор мощности

Регулятор мощности симисторный

Симисторный регулятор мощности

Регулятор мощности симисторный предназначен для регулировки мощности нагревательных и осветительных приборов мощность которых не првышает 1000 Вт.

Технические характеристики :
Рабочее напряжение; 160-300 В
Диапазон регулировки мащности 10-90%
Ток нагрузки: до 5 А

Устройство состоит из симистора и времязадающей цепочки. Принцип регулировки мощности заключается в изменения продолжительности времени открытого состояния симистора (рисунок 1). Чем большее время симистор открыт, тем большая мощность отдается в нагрузку. А так как симистор выключается в момент когда ток протекающий через симистор равен нулю, то задавать продолжительность открытия симистора будем в пределах половины периода. В начале положительного полупериода симистор закрыт. По мере увеличения сетевого напряжения, конденсатор С1 заряжается через делитель R1, R2. Заряд конденсатора продолжается до тех пор, пока напряжение на нем не достигнет порога «пробоя» динистора (около 32 В). Динистор замкнет цепь Dl, Cl, D3 и откроет симистор U1. Симистор остается открытым до конца полупериода. Время зарядки конденсатора задается параметрами цепочки R1, R2, С1. Резистором R2 задаем время зарядки конденсатора, а соответственно и момент открытия динистора и симистора. Т.е. этим резистором производится регулировка мощности. При действии отрицательной полуволны принцип работы аналогичен. Светодиод LED индицирует рабочий режим регулятора мощности.

Симисторный регулятор мощности Схема симисторного регулятора мощности

Используемые радиоэлементы:
R1 - 3.9. 10K
R2 - 500K
C1 - 0.22мкФ
D1 - 1N4148
D2 - светодиод
D3 - DB4
U1 - BT06-600
P1,P2 клемники
R3 - 22K 2Вт
C2 - 0.22мкФ 400В

Симисторный регулятор мощности расположение деталей на печатной плате

Правильно собранная схема наладки не требует.
При использовании нагрузки мощностью более 300 Вт, симистор необходимо установить на радиатор с площадью поверхности не мене 20 см 2
На переменный резистор необходимо установить ручку из изолированного материала.

При дополнении схемы всего двумя элементами (на схеме обозначены красным цветом)появляется возможность управления индуктивной нагрузкой. Т.е. можно на выход симисторного регулятора мощности подключить трансформатор.

ВНИМАНИЕ! Устройство гальванически не развязано от сети! Запрещается прикасаться к элементам включенной схемы!

Смотреть обучающее видео на тему "Симисторный регулятор мощности"

Похожие новости

*****

Регулятор мощности схема

На рисунке представлена схема симисторного регулятора мощности, которую можно менять за счет изменения общего количества сетевых полупериодов, пропускаемых симистором за определенный интервал времени. На элементах микросхемы DD1.1.DD1.3 сделан генератор прямоугольных импульсов. период колебания которого около 15-25 сетевых полупериодов.

Симисторный регулятор мощности

Скважность импульсов регулируется резистором R3. Транзистор VT1 совместно с диодами VD5-VD8 предназначен для привязки момента включения симистора во время перехода сетевого напряжения через нуль. В основном этот транзистор открыт, соответственно, на вход DD1.4 поступает "1" и транзистор VT2 с симистором VS1 закрыты. В момент перехода через нуль транзистор VT1 закрывается и почти сразу открывается. При этом, если на выходе DD1.3 была 1, то состояние элементов DD1.1.DD1.6 не изменится, а если на выходе DD1.3 был "ноль", то элементы DD1.4.DD1.6 сгенерируют короткий импульс, который усилится транзистором VT2 и откроет симистор.

До тех пор пока на выходе генератора будет логический ноль, процесс будет идти цикличиски после каждого перехода сетевого напряжения через точку нуля.

Симисторный регулятор мощности

Схема симисторного регулятора мощности

Симисторный регулятор мощностиСимисторный регулятор мощности

Основа схемы зарубежный симистор mac97a8, который позваляет коммутировать большие мощности подключенные нагрузки, а для ее регулировки использовал старый советский переменный резистор, а в качестве индикации использовал обычный светодиод.

В симисторном регуляторе мощности применен принцип фазового управления. Работа схемы регулятора мощности основана на изменении момента включения симистора относительно перехода сетевого напряжения через ноль. В первоначальный момент положительного полупериода симистор находится в закрытом состояние. С возрастанием сетевого напряжения, конденсатор С1 заряжается через делитель.

Симисторный регулятор мощности

Возрастающее напряжения на конденсаторе сдвигается по фазе от сетевого на величину, зависящую от суммарного сопротивления обоих резисторов и емкости конденсатора. Заряд конденсатора происходит до тех пор, пока напряжение на нем не дойдет до уровня «пробоя» динистора, приблизительно 32 В.

В момент открытия динистора, откроется и симистор, через подключенную к выходу нагрузку потечет ток, зависящий от суммарного сопротивлением открытого симистора и нагрузки. Симистор будет открыт до конца полупериода. Резистором VR1 задаем напряжение открывания динистора и симистора, тем самым регулируя мощность. В момент действия отрицательного полупериода алгоритм работы схемы аналогичен.

Симисторный регулятор мощности

Симисторный регулятор мощности

Симисторный регулятор мощности на 75 Ампер

При каждой положительной полуволне входного переменного напряжения емкость С1 заряжается через цепочку резисторов R3, R4, когда напряжение на конденсаторе С1 станет равным напряжению открытия динистора VD7 произойдет его пробой и разрядка емкости через диодный мост VD1-VD4. а также сопротивление R1 и управляющий электрод VS1. Для открытия симистора используется электрическая цепочка из диодов VD5, VD6 конденсатора С2 и сопротивления R5.

Требуется подобрать номинал резистора R2 так, чтобы при обоих полуволнах сетевого напряжения, симистор регулятора надежно срабатывал, а также требуется подобрать номиналы сопротивлений R3 и R4 так, чтобы при вращении ручки переменного сопротивления R4 напряжение на нагрузке плавно изменялось от минимальных до максимальных значений. Вместо симистора ТС 2-80 можно использовать ТС2-50 или ТС2-25, хотя будет небольшой проигрыш по допустимой мощности в нагрузке.

Симисторный регулятор мощности

Самая простая схема симисторного регулятора

Симисторный регулятор мощности

В качестве симистора был использован КУ208Г, ТС106-10-4, ТС 112-10-4 и их аналоги. В тот момент времени когда симистор закрыт, осуществляется заряд конденсатора С1 через подключенную нагрузку и резисторы R1 и R2. Скорость заряда изменяется резистором R2, резистор R1 предназначен для ограничения максимальной величины тока заряда

При достижении на обкладках конденсатора порогового значения напряжения происходит открытие ключа, конденсатор С1 быстро разряжается на управляющий электрод и перключает симистор из закрытого состояния в открытое, в открытом состоянии симистор шунтирует цепь R1, R2, С1. В момент перехода сетевого напряжения через ноль происходит закрытие симистора, затем снова заряд конденсатора C1, но уже отрицательным напряжением.

Конденсатор С1 от 0,1. 1,0 мкФ. Резистор R2 1,0. 0,1 МОм. Симистор включается положительным импульсом тока на управляющий электрод при положительном напряжении на выводе условном аноде и отрицательным импульсом тока на управляющий электрод при отрицательном напряжении условного катода. Таким образом, ключевой элемент для регулятоpa должен быть двунаправленным. Можно в качестве ключа использовать двунаправленный динистор.

Симисторный регулятор мощности

Схема регулятор мощности на тиристоре КУ202М

Диоды Д5-Д6 используются для защиты тиристора от возможного пробоя обратным напряжением. Транзистор работает в режиме лавинного пробоя. Его напряжение пробоя около 18-25 вольт. Если вы не найдете П416Б, то можно попытаться найти ему замену в справочнике по транзисторам .

Импульсный трансформатор наматывается на ферритовом кольце диаметром 15 мм, марки Н2000.Тиристор можно заменить на КУ201

Симисторный регулятор мощности

Регулятор мощности на 220 вольт

Схема этого регулятора мощности похожа на вышеописанные схемы, только введена помехоподавляющая цепь С2, R3, а ыыключатель SW дает возможность разрывать цепь зарядки управляющего конденсатора, что приводит к моментальному запиранию симистора и отключению нагрузки.

Симисторный регулятор мощности

С1, С2 - 0,1 МКФ, R1-4k7, R2-2 мОм, R3-220 Ом, VR1-500 кОм, DB3 - динистор, BTA26-600B - симистор, 1N4148/16 В - диод, светодиод любой.

Симисторный регулятор мощности

Схема на 2 киловатта и на 220 вольт

Регулятор используется для регулировки мощности нагрузки в цепях до 2000 Вт, ламп накаливания, нагревательных приборов, паяльника, асинхронных двигателей, зарядного устройство для авто, и если заменить симистор на более мощный можно применить в цепи регупировки тока в сварочных трансформаторах.

Симисторный регулятор мощности

Симисторный регулятор мощности

Дискретный регулятор мощности

Принцип работы этой схемы регулятора мощности заключается в том, что на нагрузку поступает полупериод сетевого напряжения через выбранное число пропущенных полупериодов.

Симисторный регулятор мощности

Диодный мост выпрямляет переменное напряжение. Резистор R1 и стабилитрон VD2, вместе с конденсатором фильтра образуют источник питания 10 В для питания микросхемы К561ИЕ8 и транзистора КТ315. Выпрямленные положительные полупериоды напряжения проходя через конденсатор С1 стабилизируются стабилитроном VD3 на уровне 10 В. Таким образом, на счетный вход С счетчика К561ИЕ8 следуют импульсы с частотой 100 Гц. Если переключатель SA1 подсоединен к выходу 2, то на базе транзистора будет постоянно присутствовать уровень логической единицы. Т.к импульс обнуления микросхемы очень короткий и счетчик успевает перезапуститься от того же импульса.

На выводе 3 установится уровень логической единицы. Тиристор будет открыт. На нагрузке будет выделяться вся мощность. Во всех последующих положениях SA1 на выводе 3 счетчика будет проходить один импульс через 2-9 импульсов.

Микросхема К561ИЕ8 это десятичный счетчик с позиционным дешифратором на выходе, поэтому уровень логической единицы будет периодически на всех выходах. Однако, если переключатель установлен на 5 выходе (выв.1), то счет будет происходить только до 5. При прохождении импульсом выхода 5 микросхема обнулится. Начнется счет с ноля, а на выводе 3 появится уровень логической единицы на время одного полупериода. На это время открывается транзистор и тиристор, один полупериод проходит в нагрузку. Для того чтобы было понятней привожу векторные диаграммы работы схемы.

Симисторный регулятор мощности

Если требуется уменьшить мощность нагрузки, можно добавить еще одну микросхему счетчика, соединив вывод 12 предыдущей микросхемы с выводом 14 последующей. Установив еще один переключатель, можно будет регулировать мощность до 99 пропущенных импульсов. Т.е. можно получить примерно сотую часть общей мощности.

Симисторный регулятор мощности

Регулятор мощности схема на КР1182ПМ1 и симисторе

Микросхема КР1182ПМ1 имеет в своем внутреннем составе два тиристора и узел управления ими. Максимальное входное напряжение микросхемы КР1182ПМ1 около 270 Вольт, а максимум в нагрузке может достигать 150 Ватт без использования внешнего симистора и до 2000 Вт с использованием, а также с учетом того, что симистор будет установлен на радиаторе.

Для снижения уровня внешних помех используется конденсатор С1 и дроссель L1, а емкость С4 требуется для плавного включения нагрузки. Регулировка осуществляется с помощью сопротивления R3.

Симисторный регулятор мощности

Регуляторы мощности для паяльника

*****

Регулятор мощности на симисторе: схемы. Фазовый регулятор мощности на симисторе

Многие приборы в доме человек имеет возможность настраивать. Осуществляется этот процесс при помощи специального регулятора. На сегодняшний день в отдельную категорию выделен симисторный подтип, однако многие про данный элемент знают мало. На самом деле особенность указанной детали заключается в двухстороннем действии. Возможно это благодаря аноду, а также катоду. В результате их передвижения в устройстве происходит изменение направления тока.

Некоторые считают, что симисторы вполне могут быть заменены контакторами, реле и пускателями. Однако это мнение является ошибочным. В первую очередь следует отметить долговечность данных регуляторов. По частоте коммутации они практические не ограничены и это хорошая новость. Износ деталей при этом минимален. Дополнительно следует отметить полное отсутствие искрообразования в приборах такого типа. В моменты нулевого сетевого тока осуществлять коммутации регуляторы способны. Благодаря этому помехи в цепи значительно снижаются.

Симисторный регулятор мощности

Схема простого регулятора

Схема регулятора мощности на симисторе включает в себя одну микросхему, а также набор тиристоров. Располагаться в цепи они могут после конденсатора или сразу у платы. Переменный резистор, как правило, в устройстве имеется один. Он в регуляторе отвечает за помехи. Напряжение резистор способен выдерживать самое разнообразное. В данном случае многое зависит от вольности прибора. Резистор, который располагается за конденсатором, предельное сопротивление обязан выдерживать на уровне 3 Ом. В свою очередь элемент на выходе устанавливается чуть слабее. Также схема регулятора мощности на симисторе включает в себя предохранитель.

Симисторный регулятор мощности

Регуляторы на симисторе "КУ208г"

Данный симистор отличается тем, что способен работать с коммутируемым переменным током. При этом напряжение в системе выдерживается до 5 А. Регулятор мощности на симисторе "КУ208г", как правило, является компактным и использоваться может в различном оборудовании. Как пример можно привести паяльник.

Регуляторы мощности для паяльника

Регулятор мощности паяльника на симисторе в микросхеме не нуждается. Транзисторов в стандартной цепи имеется два. Устанавливаются они в некоторых случаях биполярного типа. Первый из них должен находиться непосредственно возле источника питания. В это время второй биполярный транзистор располагается за симистором.

Отличительной особенностью таких регуляторов принято считать наличие слабовольных стабилитронов. Наиболее часто данные элементы на рынке можно встретить с маркировкой "КД2". Это говорит о том, что стабилитрон предельное напряжение выдерживает 2 В. В свою очередь переменный ток в системе максимум может составлять 5 А. Конденсатор в цепи всегда устанавливается только один. Припаивают его в некоторых случаях сразу за биполярным транзистором.

Данный элемент в устройстве отвечает за преобразование тока. Резисторы регулятор мощности на симисторе имеет разного типа. Аналоговые элементы на входе сопротивление максимум выдерживают 2 Ом. В свою очередь за стабилитроном резисторы устанавливаются переменного типа с повышенной частотностью. Работать они способны в обоих направлениях.

Симисторный регулятор мощности

Схемы моделей для пылесосов

Регулятор мощности на симисторе пылесоса состоит из набора диодов, а также резисторов с одним конденсатором. Для хорошей проводимости симистор в некоторых случаях снабжается ребристым теплоотводом. Это дополнительно помогает в стабилизации напряжения. Конденсаторы в системе справляются с импульсами. Транзисторы в основном используют кремниевые.

Пропускать они через себя способны только постоянный ток. Сопротивление на выходе в системе не должно превышать 4 Ом. В противном случае на симистор подается большое напряжение. Многое в данной ситуации также зависит от коэффициента передачи тока. Влияет на него коллектор вместе с установленным эммитером.

Симисторный регулятор мощности

Отличие фазовых регуляторов

Микросхемы в таких регуляторах применяются низкочастотные. Это необходимо для быстрого процесса преобразования. Стабилитроны используются довольно редко. Смена фазы в системе происходит за счет переключение конденсатора в верхнее положение. Для стабилизации напряжения фазовый регулятор мощности на симисторе имеет два тиристора, а работают они в цепи попарно. За счет высокой частоты на катоде, диоды припаиваются очень редко.

Схема безпомехового регулятора

Простой беспомеховый регулятор мощности на симисторе, как правило, применяется на устройствах с напряжением свыше 200 В. В данном случае микросхемы используются двухканальные. Система диодов устанавливается рядом с конденсаторами. Переменные транзисторы в цепи не используются. Максимальное сопротивление конденсатор обязан выдерживать до 3 Ом. Непосредственно регулирование мощности устройства осуществляется при помощи приемника.

Уровень коэффициента заполнения импульсов при этом изменяется. Конденсаторы в системе пропускают через себя только постоянный ток. Частота тактового транзистора зависит от коэффициента деления счетчика. Микроконтроллеры в системе используются для подавления помех. Частота импульсов на входе зависит исключительно от предельного регистра.

Симисторный регулятор мощности

Регуляторы с симисторами "ТС80"

Простой регулятор мощности на симисторе "ТС80" способен похвастаться хорошей теплопроводимостью. Непосредственно процесс преобразования осуществляется в трансформаторе. Предельная частота при этом зависит только от напряжения в сети. В целом регуляторы с симисторами такого типа отличаются повышенной надежностью, и проработать они способны долгое время. Однако недостатки у них также имеются.

В первую очередь следует отметить малый уровень стабилизации. Связано это с большой нагрузкой, которая оказывается на тиристор. Чтобы справиться со стабильностью тока, в некоторых случаях применяют специальные фильтры. Однако для бытового оборудования это не помогает. Таким образом, использовать регуляторы такого типа лучше всего на приемниках и прочих низкочастотных устройствах.

Модели с симисторами "ТС 125"

Регулятор мощности на симисторе "ТС 125" используется для мощных блоков питания. Сопротивление он способен максимум выдержать до 4 Ом. В таком случае проводимость тепла находится на высокой отметке. Дополнительно следует учитывать, что симисторы данного типа оборудуются индикаторами. Данные устройства предназначены для борьбы с электромагнитными помехами.

В некоторых случаях система индикации устанавливается активная. Это предполагает использование низкочастотного контроллера. Данный элемент в системе работает на пару с ограничителями. Пропускают оно через себя только переменный ток. В случае отрицательной полярности, в работу включаются конденсаторы. Для перехода на сетевое напряжение имеется ряд транзисторов.

Симисторный регулятор мощности

Дистанционные устройства для регулирования

Дистанционный регулятор мощности на симисторе в обязательном порядке оснащается контроллером. Диоды в системе устанавливаются только аналогового типа. Микросхема для нормальной работы конденсаторов требуется трехканальная. Резисторов, как правило, необходимо только три. Один из них нужен для передачи и стабилизации сигнала от трансформатора. Остальные два резистора устанавливаются напротив конденсаторов. В этом случае амплитуда помех значительно снижается и это следует учитывать.

Дополнительно в регуляторах имеются преобразователи. Номинальную нагрузку указанные элементы выдерживают на уровне 5 А. Переменные резисторы в цепи применяются довольно редко. Связано это с тем, что источники питания имеются высоковольтные. Системы фильтрации устанавливаются исключительно перед трансформатором. В данном случае коэффициент точности будет максимальным.

Регуляторы с плавным пуском

Для плавного пуска в регулятор мощности на симисторе вставляют специальный блок. Его основной задачей является двойное интегрирование. Происходит это по определению предельного значения полярности. Система индикации в регуляторах присутствует довольно редко. Использоваться такие устройства могут при температурах от -20 до +30 градусов. Источником питания системы может быть блок мощностью до 10 В. Чувствительность устройства зависит исключительно от типов резисторов. Если в системе применять аналоговые элементы, то преобразование тока происходит значительно быстрее.

Синфазное напряжение регулятором способно поддерживаться на уровне 5 В. Конденсаторы в устройстве устанавливаются с предельным сопротивлением 6 Ом. В данном случае их емкость минимум должна составлять 2 пФ. Все это позволит значительно стабилизировать напряжение на выходе. Диоды в регуляторе припаиваются малой мощности. Нагрузку максимум они должны быть готовы выдерживать на уровне 5 А.

Симисторный регулятор мощности

Схемы регуляторов для электроплитки

Для таких приборов как электроплитка, резисторы требуются токоограничительные. Стабилитрон в системе используется только один. Транзисторов в приборе может находиться до трех единиц. В данном случае многое зависит от типа блока питания. Если предельное напряжение составляет менее 30 В, то в начале цепи требуется только один транзистор. Сопротивление он должен быть способным выдерживать на уровне 5 Ом. Симистор в системе устанавливается между двумя конденсаторами. На первичную обмотку ток подается только после того, как пройдет через трансформатор.

Симисторный регулятор мощности

7 частей тела, которые не следует трогать руками Думайте о своем теле, как о храме: вы можете его использовать, но есть некоторые священные места, которые нельзя трогать руками. Исследования показыва.

Симисторный регулятор мощности

Топ-10 разорившихся звезд Оказывается, иногда даже самая громкая слава заканчивается провалом, как в случае с этими знаменитостями.

Симисторный регулятор мощности

Как выглядеть моложе: лучшие стрижки для тех, кому за 30, 40, 50, 60 Девушки в 20 лет не волнуются о форме и длине прически. Кажется, молодость создана для экспериментов над внешностью и дерзких локонов. Однако уже посл.

Симисторный регулятор мощности

Что форма носа может сказать о вашей личности? Многие эксперты считают, что, посмотрев на нос, можно многое сказать о личности человека. Поэтому при первой встрече обратите внимание на нос незнаком.

Симисторный регулятор мощности

Эти 10 мелочей мужчина всегда замечает в женщине Думаете, ваш мужчина ничего не смыслит в женской психологии? Это не так. От взгляда любящего вас партнера не укроется ни единая мелочь. И вот 10 вещей.

Симисторный регулятор мощности

9 знаменитых женщин, которые влюблялись в женщин Проявление интереса не к противоположному полу не является чем-то необычным. Вы вряд ли сможете удивить или потрясти кого-то, если признаетесь в том.

*****

Для чего необходимы и как собрать симисторные регуляторы мощности?

Что это такое? Под данным термином понимается оборудование, которое предназначено для регуляции мощности потребителей, подключенных к сети. В основе лежит симистор, являющийся прибором-полупроводником со сложной пятислойной структурой, одна из разновидностей тиристора, используемая для максимально быстрого изменения параметров и свойств электрического тока внутри сети.

Симисторный регулятор мощности

Главное отличие симистора заключается в особенностях силовых выводов данного прибора, которые одновременно являются катодами и анодами, в то время как у тиристоров они строго разделены.

Различия в силовых выводах прибора принципиальны только в процессе включения, когда по отношению к главному электроду они являются условным анодом и условным катодом.

Назначение и устройство

Симисторный регулятор мощностиКак уже упоминалось, регуляторы мощности, созданные на основе симисторов, в первую очередь предназначены для изменения параметров функционирования оборудования, подключенного к электросети.

Учитывая этот факт, подобные устройства могут выполнять следующие основные функции:

  1. Изменение яркости свечения ламп для регуляции степени освещения в помещениях.
  2. Контроль за работой отопительных приборов, осуществление изменения параметров нагрева их рабочей поверхности.
  3. Регулирование параметро в работы вентиляционного оборудования в жилых или служебных помещениях.
  4. Регулировка мощности работы иного оборудования с возможностью изменения параметров функционирования от 0 (отключение) до 100 (максимальная мощность).
  5. Определение аварийных параметров для определенного оборудования, подключенного в сеть.
  6. Снижение количества потребляемой энергии.
  7. На основе данных приборов создаются диммеры – особая модификация выключателей света, отвечающая за его яркость.

Все подобные регуляторы мощности, изготовленные на основе симисторов, имеют специфическое устройство, которое описано ниже:

  1. В структуру входит 3 выводных электрода, один из них является главным управляющим элементом. Главный электрод имеет общепринятое обозначение G, а остальные элементы обладают маркировкой Т1 и Т2 либо А1 и А2.
  2. Количество слоев полупроводников всегда равняется 5, такая структура прибора позволяет ему пропускать электрический ток во всех направлениях. В целом, эта система напоминает устройство транзисторов p-n-p образца, но отличие заключается в увеличение количества областей, которым свойственна n-проводимость. При этом, 2 области, расположенные непосредственно около анода и катода, образуют четвертый полупроводниковый слой и отвечают за его функционирование. 5 слой образуется за счет n-проводниковой области, расположенной возле главного электрода.
  3. В корпусе самого симистора находится одновременно 2 различных полупроводника, что отличает его от предшественника – тиристора.

Принцип работы

фазовое управление симистором

В ходе работе и выполнения своих функций, все без исключения симисторные регуляторы мощности пользуются принципом фазового управления. Их функционирование осуществляется благодаря изменениям периода вхождения симистора в рабочий режим относительно прохождения напряжения внутри электросети через ноль.

Это служит причиной возникновения отрицательных или положительных полуволн, то есть фактически меняет форму питающего напряжения.

Более подробно данный процесс можно описать следующим образом:

  1. Начинает функционировать положительный полупериод, в это время симистор в структуре регулятора мощности остается закрытым.
  2. Напряжение внутри сети постепенно увеличивается, параллельно конденсатор начинает свою подзарядку через делители.
  3. Сдвиг по фазе вызывает отставание напряжение на конденсаторе от общесетевого показателя, несмотря на тот факт, что первый параметр постоянно наращивается.
  4. Величина отставания напряжения напрямую зависит только от общего сопротивления задействованных резисторов и емкости конденсатора.
  5. Конденсатор продолжает заряжаться до той степени, пока показатель его напряжения не дойдет до таких параметров, при которых возможен проход через динистор.
  6. После того. как напряжение на конденсаторе достигает примерно 32 В, необходимый параметр достигнут и динистор открывается, сразу после этого происходит и открытие синистора.
  7. После открытия динистора и синистор а, благодаря оказываемой нагрузке, начинается движение электрического тока. Его величина зависит от общего сопротивления синистора, находящегося в открытом состоянии, и объемов оказываемой нагрузки.
  8. Синистор сохраняет открытое состояние до момента завершения полупериода.
  9. Резистор в это время устанавливает напряжение, при котором возможно одновременное открытие динистора и синистора. Иными словами, резистор фактически начинает осуществлять процесс регулирования параметров мощности.
  10. В периоды. когда действует проходящая отрицательная полуволна, схема функционирует по точно таким же принципам, как и в положительный полупериод.

Таким образом, описывается принцип работы, по которому осуществляется функционирование обычного симисторного регулятора мощности.

Более сложные современные устройства, являющиеся модификацией стандартных устройств, и работающие при более высоких параметрах, зачастую обладают расширенной схемой и более трудным принципом действия.

Сборка своими руками

Симисторный регулятор мощности

Многие люди, хотя бы немного разбирающиеся в электронике, могут самостоятельно собрать симисторный регулятор мощности. Главным условием является наличие в схеме самого симистора и реализация его принципа действия, который был описан выше.

Первоначально, необходимо сделать следующие приготовления:

  • свободная плата;
  • 6 резисторов, которые в дальнейшем будут иметь обозначения R1, R2, R3, R4, R5 и R;
  • индукционная катушка;
  • 4 конденсатора, будут обозначены как C1, C2, C3 и C;
  • 1 симистор;
  • 3 динистора, будут обозначены как VD1, VD2 и VD;

Симисторный регулятор мощностиПосле того, как все приготовления сделаны, можно приступать к самому процессу изготовления симисторного регулятора мощности:

  1. На приготовленной плате со специальными штырьками ставятся перемычки, которые помогают организовать проволочный шлейф в верхнем ряду.
  2. После осуществления этого действия. в самом нижнем ряду создается такой же второй шлейф.
  3. К обоим шлейфам необходимо припаять конденсатор C1, а к концу верхнего шлейфа еще подсоединить резистор R1 с сопротивлением 1 Вт.
  4. К нижнему шлейфу необходимо последовательно подключить динистор VD2, конденсаторы C2 и C3, симистор VS1, резистор R
  5. От VD2 идет подключение к динистору VD
  6. От динистора VD1 проводится дополнительный шлейф, к которому подсоединяется сопротивление регулирующих резисторов R1, R2, R4 и R
  7. Теперь необходимо перейти к верхнему шлейфу, к которому подключается резистор R
  8. Последовательно туда же подключается и индукционная катушка.
  9. От индукционной катушки идет подключение к симистору и конденсатору C4, а от него к резистору R
  10. Динистор VD3 подсоединяется к управляющему электроду симистора VS
  11. Необходимо закольцевать конденсатор C3, резисторы R3, R4 и R5, после чего получившуюся связку подключить к динистору VD
  12. Точно также закольцовывается конденсатор C2, резисторы R2 и R3 и подключаются к тому же динистору VD

На этом, сбор симисторного регулятора мощности завершен, описание данной схемы является полностью рабочим и, если все было сделано в соответствии с ним, то должно получиться работоспособное устройство, в котором за регуляцию мощности ламп будет отвечать резистор с сопротивлением 1 Вт – R5.

Обзор моделей

Ниже будут рассмотрены различные модели современных симисторных регуляторов мощности, которые представлены на рынке:

Регулятор мощности РМ 2

Симисторный регулятор мощности

Эту модель одинаково успешно можно использовать как в домашних условиях, так и на производстве. Основное предназначение заключается в изменении показателей мощности при функционировании отопительных приборов и источников освещения.

Отличительной чертой регулятора РМ 2 является низкий уровень зависимости от сетевого напряжения, устройство способно поддерживать стабильное напряжение на выходе вплоть до 1 В. Это положительно влияет на сам процесс изменения мощности, поскольку позволяет избежать резких перепадов и температурного перегрева оборудования.

Цена на такой прибор составляет около 1500 рублей.

Регулятор мощности РМ 2 16 А

Симисторный регулятор мощности

Данный прибор был разработан специально для быстрого подключения и использования на промышленных и производственных предприятиях. Основные задачи регулятора заключаются в коррекции уровня освещения на объектах, изменении степени обогрева напольных покрытий, а также управлении скоростью вращения ряда двигателей коллекторного либо синхронного типа.

РМ 2 16 А может функционировать при входном напряжении, достигающим 400 В, также, как и РМ 2 способен поддерживать заданное стабильное напряжение до 1 В вне зависимости от колебаний этого параметра в электросети.

Средняя цена на данную модель составляет 2500 рублей.

Регулятор мощности РНЭ-1

Симисторный регулятор мощности

Прибор предназначен для использования в быту и позволяет плавно осуществлять изменение напряжения в сети при помощи силового симистора, это дает возможность регулировать яркость ламп, мощность обогревателей и иного оборудования, которое способно по своим параметрам переносить изменение синусоидальной формы поступающего электрического тока.

Обладает защитой, которая представляет собой плавкий термический предохранитель. Функционирует данная модель при напряжении до 220 В.

цена на РНЭ-1 варьируется в рамках 1200-1400 рублей.

Регулятор мощности NF

Симисторный регулятор мощности

Представляет собой не только полноценный прибор, но и своеобразный конструктор. который необходимо самостоятельно доработать перед началом использования. В комплектацию входит плата, схема и все необходимое для сбора симисторного регулятора мощности.

Готовый прибор можно задействовать в быту, как многофункциональное устройство, что обуславливается обширным диапазоном регулировки параметров.

Цена составляет около 1000-1200 рублей.

  • Симисторный регулятор мощности

Как правильно проверять тиристоры?

  • Симисторный регулятор мощности

    Устройство, разновидности и подключение стартеров для ламп дневного света

  • Симисторный регулятор мощности

    Устройство, модели и подключение уличных датчиков освещенности

    *****

    Принцип работы симисторных регуляторов мощности

    Полупроводниковый прибор, имеющий 5 p-n переходов и способный пропускать ток в прямом и обратном направлениях, называется симистором. Из-за неспособности работы на высоких частотах переменного тока, высокой чувствительности к электромагнитным помехам и значительного тепловыделения при коммутации больших нагрузок, в настоящее время широкого применения в мощных промышленных установках они не имеют.

    Там их с успехом заменяют схемы на тиристорах и IGBT-транзисторах. Но компактные размеры прибора и его долговечность в сочетании с невысокой стоимостью и простотой схемы управления позволили найти им применение в сферах, где указанные выше недостатки не имеют существенного значения.

    Сегодня схемы на симисторах можно найти во многих бытовых приборах от фена до пылесоса, ручном электроинструменте и электронагревательных устройствах – там, где требуется плавная регулировка мощности.

    Симисторный регулятор мощности

    Принцип работы

    Регулятор мощности на симисторе работает подобно электронному ключу, периодически открываясь и закрываясь, с частотой, заданной схемой управления. При отпирании симистор пропускает часть полуволны сетевого напряжения, а значит потребитель получает только часть номинальной мощности.

    Делаем своими руками

    На сегодняшний день ассортимент симисторных регуляторов в продаже не слишком велик. И, хотя цены на такие устройства невелики, зачастую они не отвечают требованиям потребителя. По этой причине рассмотрим несколько основных схем регуляторов, их назначение и используемую элементную базу.

    Схема прибора

    Простейший вариант схемы, рассчитанный для работы на любую нагрузку. Используются традиционные электронные компоненты, принцип управления фазово-импульсный.

    • симистор VD4, 10 А, 400 В;
    • динистор VD3, порог открывания 32 В;
    • потенциометр R2.

    Ток, протекающий через потенциометр R2 и сопротивление R3, каждой полуволной заряжает конденсатор С1. Когда на обкладках конденсатора напряжение достигнет 32 В, произойдёт открытие динистора VD3 и С1 начнёт разряжаться через R4 и VD3 на управляющий вывод симистора VD4, который откроется для прохождения тока на нагрузку.

    Длительность открытия регулируется подбором порогового напряжения VD3 (величина постоянная) и сопротивлением R2. Мощность в нагрузке прямо пропорциональна величине сопротивления потенциометра R2.

    Дополнительная цепь из диодов VD1 и VD2 и сопротивления R1 является необязательной и служит для обеспечения плавности и точности регулировки выходной мощности. Ограничение тока, протекающего через VD3, выполняет резистор R4. Этим достигается необходимая для открытия VD4 длительность импульса. Предохранитель Пр.1 защищает схему от токов короткого замыкания.

    Отличительной особенностью схемы является то, что динистор открывается на одинаковый угол в каждой полуволне сетевого напряжения. Вследствие этого не происходит выпрямление тока, и становится возможным подключение индуктивной нагрузки, например, трансформатора.

    Подбирать симисторы следует по величине нагрузке, исходя из расчёта 1 А = 200 Вт.

    • Динистор DB3;
    • Симистор ТС106-10-4, ВТ136-600 или другие, требуемого номинала по току 4-12А.
    • Диоды VD1, VD2 типа 1N4007;
    • Сопротивления R1100 кОм, R3 1 кОм, R4 270 Ом, R5 1,6 кОм, потенциометр R2 100 кОм;
    • Конденсатор С1 0,47 мкФ (рабочее напряжение от 250 В).

    Отметим, что схема является наиболее распространённой, с небольшими вариациями. Например, динистор может быть заменён на диодный мост или может быть установлена помехоподавляющая RC цепочка параллельно симистору.

    Более современной является схема с управлением симистора от микроконтроллера – PIC, AVR или другие. Такая схема обеспечивает более точную регулировку напряжения и тока в цепи нагрузки, но является и более сложной в реализации.

    Симисторный регулятор мощности

    Схема симисторного регулятора мощности

    Сборку регулятора мощности необходимо производить в следующей последовательности:

    1. Определить параметры прибора, на который будет работать разрабатываемое устройство. К параметрам относятся: количество фаз (1 или 3), необходимость точной регулировки выходной мощности, входное напряжение в вольтах и номинальный ток в амперах.
    2. Выбрать тип устройства (аналоговый или цифровой), произвести подбор элементов по мощности нагрузки. Можно проверить своё решение в одной из программ для моделирования электрических цепей – Electronics Workbench, CircuitMaker или их онлайн аналогах EasyEDA, CircuitSims или любой другой на ваш выбор.
    3. Рассчитать тепловыделение по следующей формуле: падение напряжения на симисторе (около 2 В) умножить на номинальный ток в амперах. Точные значения падения напряжения в открытом состоянии и номинальный пропускаемый ток указаны в характеристиках симистора. Получаем рассеиваемую мощность в ваттах. Подобрать по рассчитанной мощности радиатор.
    4. Закупить необходимые электронные компоненты. радиатор и печатную плату.
    5. Произвести разводку контактных дорожек на плате и подготовить площадки для установки элементов. Предусмотреть крепление на плате для симистора и радиатора.
    6. Установить элементы на плату при помощи пайки. Если нет возможности подготовить печатную плату, то можно использовать для соединения компонентов навесной монтаж, используя короткие провода. При сборке особое внимание уделить полярности подключения диодов и симистора. Если на них нет маркировки выводов, то прозвонить их при помощи цифрового мультиметра или «аркашки».
    7. Проверить собранную схему мультиметром в режиме сопротивления. Полученное изделие должно соответствовать изначальному проекту.
    8. Надёжно закрепить симистор на радиатор. Между симистором и радиатором не забыть проложить изолирующую теплопередающую прокладку. Скрепляющий винт надёжно заизолировать.
    9. Поместить собранную схему в пластиковый корпус.
    10. Вспомнить о том, что на выводах элементов присутствует опасное напряжение.
    11. Выкрутить потенциометр на минимум и произвести пробное включение. Измерить напряжение мультиметром на выходе регулятора. Плавно поворачивая ручку потенциометра следить за изменением напряжения на выходе.
    12. Если результат устраивает, то можно подключать нагрузку к выходу регулятора. В противном случае необходимо произвести регулировки мощности.

    Симисторный регулятор мощности

    Симисторный радиатор мощности

    Регулировка мощности

    За регулировку мощности отвечает потенциометр, через который заряжается конденсатор и разрядная цепь конденсатора. При неудовлетворительных параметрах выходной мощности следует подбирать номинал сопротивления в разрядной цепи и, при малом диапазоне регулировки мощности, номинал потенциометра.

    Блиц-советы

    • продлить срок службы лампы, регулировать освещение или температуру паяльника поможет простой и недорогой регулятор на симисторах.
    • выбирайте тип схемы и параметры компонентов по планируемой нагрузке.
    • тщательно проработайте схемные решения.
    • будьте внимательны при сборке схемы. соблюдайте полярность полупроводниковых компонентов.
    • не забывайте, что электрический ток есть во всех элементах схемы и он смертельно опасен для человека.

    Нравится? Поделитесь с друзьями

    • Симисторный регулятор мощности

    Проверка конденсатора мультиметром

  • Симисторный регулятор мощности

    Как выбрать светодиодные лампы для дома

  • Симисторный регулятор мощности

    Как подключить светодиодную ленту за 5 минут

  • Добавить комментарий

    Ваш e-mail не будет опубликован. Обязательные поля помечены *