Асинхронный электродвигатель

АСИНХРОННЫЕ ДВИГАТЕЛИ

Асинхронными называются двигатели, у которых частота вращения ротора отстает от частоты вращения магнитного по­ля статора при прохождении в его обмотках трехфазного тока.

При прохождении в обмотках статора трехфазной машины трех­фазного тока возникает вращающееся магнитное поле, под дей­ствием которого в роторе индуктируется электрический ток. В результате взаимодействия вращающегося магнитного поля статора с токами, индуктируемыми в проводниках ротора, возни­кает механическое усилие, действующее на проводник с током, ко­торое и создает вращающий момент, приводящий в движение ро­тор. При этом частота вращения ротора у асинхронного двигате­ля всегда меньше частоты вращения вращающегося магнитного поля статора за счет скольжения ротора, которое у современных двигателей составляет примерно 2—5%.

Таким образом асинхронный двигатель получает энергию, под­водимую к ротору вращающимся магнитным потоком (индуктив­но), в отличие от двигателей постоянного тока, у которых энер­гия подводится по проводам. Асинхронные двигатели в отличие от синхронных возбуждаются переменным током.

Асинхронный электродвигатель

Асинхронный двигатель, как и синхронный, состоит из двух основных частей: статора с обмотками фаз, по которым про­ходит трехфазный переменный ток, и ротора, ось которого уло­жена в подшипниках. Ротор может быть короткозамкнутым и фазным (рис. 170).

Короткозамкнутый ротор (рис. 170, в) представляет собой ци­линдр, по окружности которого параллельно его оси расположены проводники, замкнутые между собой с обеих сторон ротора коль­цами (в виде беличьего колеса).

Асинхронный двигатель с таким ротором называется короткозамкнутым. К его недостаткам относятся: малый пу­сковой момент и большой ток в обмотках статора при пуске. Ес­ли хотят увеличить пусковой момент или уменьшить пусковой ток, применяют асинхронные двигатели с фазным ротором (рис. 170, г). У этих двигателей на роторе размещают такую же обмотку, как и на статоре. При этом концы обмоток соединяют с контактными кольцами (рис. 170, д), расположенными на валу двигателя. Контактные кольца при помощи щеток соединяются с пусковым реостатом.

Для пуска двигателя в питающую цепь включают статор, по­сле чего постепенно выводят из цепи ротора сопротивление пуско­вого реостата. Когда двигатель пущен, контактные кольца при помощи контактов пускателя замыкаются накоротко,

Асинхронный электродвигатель

Продольный разрез асинхронного электродвигателя с фазным ротором

На рис. 171 показан продольный разрез асинхронного двигате­ля с фазным ротором. В корпусе 6 статора помещена обмотка 5, уложенная в пазы 4 стали статора. В пазах 2 стали ротора лежит обмотка 3 ротора.

Пуск в ход электродвигателя с короткозамкнутым ротором может быть осуществлен непосредственным включением пускателя па полное рабочее напряжение цепи (способ прямого пуска). Однако вследствие резкого возрастания индуктируемой э. д. с. и пускового тока напряжение в цели в пусковой момент снижается, что отрицательно сказывается на работе приводного двигателя и других потребителей, питающихся от этой цепи.

В случае большого пускового тока для его уменьшения асин­хронные двигатели с короткозамкнутым ротором обычно пускают двумя способами: переключением обмоток статора в момент пуска со звезды на треугольник, если обмотки статора при нормальной работе электродвигателя соединены треугольником, или вклю­чением электродвигателя через пусковой реостат (или авто­трансформатор) в цепи статора.

Остановка электродвигателя производится выключением контактора. После остановки электродвигателя пусковой реостат или автотрансформатор полностью вводится. Частоту вращения асинхронных двигателей регулируют, изменяя сопротивление реостата, включенного в цепь ротора (у электродвигателей с фазным ротором), и переключая статорные обмотки для изменения числа пар полюсов (у электродвигателей с короткозамкнутым ротором).

Изменение направления вращения асинхронных электродвига­телей достигается изменением направления вращающегося маг­нитного поля статора путем переключения любых двух из трех фаз обмотки статора (с помощью проводов, соединяющих зажимы статорной обмотки с цепью) при помощи обычного двухполюсного переключателя.

Асинхронные двигатели просты по конструкции, обладают по сравнению с двигателями постоянного тока меньшими размерами и массой, вследствие чего они значительно дешевле. Кроме того, они более надежны в эксплуатации, требуют меньшего внима­ния при обслуживании из-за отсутствия у них вращающегося кол­лектора и щеточного аппарата; они обладают более высоким к. п. д. аппаратура управления ими значительно проще и дешевле, чем у двигателей постоянного тока. Асинхронные двигатели работают без искрообразования, которое возможно в машинах постоянного тока с нарушенной коммутацией, поэтому они более безопасны в пожарном отношении.

Перечисленными основными преимуществами асинхронных дви­гателей объясняется современная тенденция повсеместного внедрения переменного тока на морских судах. Следует отметить, что в промышленности асинхронные двигатели давно завоевали господствующее положение по сравнению с другими типами электродвигателей.

Асинхронные двигатели строятся мощностью от долей киловатта до многих тысяч киловатт. На судах морского флота в основном применяются асинхронные двигатели с короткозамкнутым ротором, которые выпускаются в водозащищенном и брызгозащищенном исполнении и рассчитаны па напряжение 380/220 В.

1. В чем заключается принцип действия генератора постоянного тока?

2. Из каких основных частей состоит электрическая машина постоянного тока и каково их назначение?

3. Как разделяются машины постоянного тока по исполнению?

4. Каков принцип действия двигателя постоянного тока?

5. Каковы основные правила обслуживания электрических машин постоянного тока?

6. Какие машины называются синхронными и каков принцип их действия?

7. Для чего служат трансформаторы, каковы их устройство и принцип действия?

8. Какие двигатели называются асинхронными и каков принцип их действия?

9. Как подразделяются асинхронные двигатели по конструкции ротора?

*****

Асинхронный электродвигатель: конструкция и устройство

Трехфазный асинхронный электродвигатель с короткозамкнутым ротором был изобретен в далеком 1889 году, 8 марта, знаменитым русским ученым и инженером Михаилом Осиповичем Доливо-Добровольским. А уже буквально через год, 15 декабря 1890 года, был изобретен и запатентован двигатель с фазным ротором.

Асинхронный электродвигательЭлектродвигатель асинхронный трехфазный – один из самых распространенных электрических аппаратов в промышленности. Он прост в эксплуатации, надежен и обладает довольно-таки невысокой ценой. Асинхронный электродвигатель занимает фактически девяносто процентов от всего числа двигателей по всему миру. Его можно встретить практически везде – начиная от конструкции обычной стиральной машины, заканчивая огромными промышленными цехами, не говоря уже об электростанциях. Он совершил значительный технический переворот в мировой промышленности.

Асинхронный электродвигатель – это машина, которая предназначена для того, чтобы преобразовывать электрическую энергию в энергию механическую. «Асинхронный» значит просто «не одновременный». Имеется в виду, что у такой машины частота, с которой вращается магнитное поле, создаваемое статором, всегда будет больше, чем частота, с которой вращается подвижная часть двигателя – ротор.

Асинхронный электродвигатель состоит из неподвижной части - статора, и подвижной вращающейся части - ротора.

Асинхронный электродвигатель

Статор собирается из листов спрессованной электротехнической стали и обычно имеет форму цилиндра. В специальные пазы сердечника уложена обмотка статора, выполненная из обмоточного провода. Обмоток у статора несколько. Оси данных обмоток обычно сдвинуты на угол в 120 градусов относительно друг друга. Концы этих обмоток могут быть соединены звездой или треугольником (в зависимости от того, какое подается напряжение).

Роторы у такой машины, как асинхронный электродвигатель, бывают короткозамкнутыми и фазными.

Первый тип (короткозамкнутый ротор) – это сердечник, который набран из медных или алюминиевых стержней с уложенной в них обмоткой. Стержни соединены торцовыми кольцами, и их внешний вид напоминает беличью клетку. Кстати, именно поэтому такой тип ротора часто и называют «беличья клетка». Ротор в этом случае опять-таки собирают из листов электротехнической стали, прессуют и заливают алюминием.

Асинхронный электродвигатель

Фазный ротор же часто называют ротором с контактными кольцами. Он имеет обмотку трехфазную, которая фактически совершенно не отличается от обмоток статора. В основном концы обмоток такого ротора с контактными кольцами (фазного) соединены в звезду. Свободные концы подведены к этим самым контактным кольцам. В цепь обмотки зачастую добавляют дополнительный резистор благодаря наличию специальных щёток, подключенных к кольцам. Такой резистор повышает активное сопротивление в электрической цепи ротора, что способствует более плавному пуску и уменьшению значений пускового тока - это очень важно для таких машин, как электродвигатели асинхронные трехфазные.

Асинхронный электродвигатель

Дизайнер из Африки способна придать своим волосам любую форму Познакомьтесь с удивительной девушкой по имени Летиция из африканского Кот-д’Ивуара. Как она сама признается, она — арт-маньяк.

Асинхронный электродвигатель

Как выглядеть моложе: лучшие стрижки для тех, кому за 30, 40, 50, 60 Девушки в 20 лет не волнуются о форме и длине прически. Кажется, молодость создана для экспериментов над внешностью и дерзких локонов. Однако уже посл.

Асинхронный электродвигатель

10 загадочных фотографий, которые шокируют Задолго до появления Интернета и мастеров "Фотошопа" подавляющее большинство сделанных фото были подлинными. Иногда на снимки попадали поистине неверо.

Асинхронный электродвигатель

11 странных признаков, указывающих, что вы хороши в постели Вам тоже хочется верить в то, что вы доставляете своему романтическому партнеру удовольствие в постели? По крайней мере, вы не хотите краснеть и извин.

Асинхронный электродвигатель

13 признаков, что у вас самый лучший муж Мужья – это воистину великие люди. Как жаль, что хорошие супруги не растут на деревьях. Если ваша вторая половинка делает эти 13 вещей, то вы можете с.

Асинхронный электродвигатель

Каково быть девственницей в 30 лет? Каково, интересно, женщинам, которые не занимались сексом практически до достижения среднего возраста.

*****

Электротехника: Электрические машины

Асинхронный двигатель. Принцип работы. Виды асинхронного двигателя

Асинхронный электродвигатель

Одним из самых распространённых электродвигателей, который используется в большинстве устройств электропривода, является асинхронный двигатель. Этот двигатель называют асинхронным (не-синхронный) по той причине, что его ротор вращается с меньшей скоростью, чем у синхронного двигателя, относительно скорости вращения вектора магнитного поля.

Необходимо объяснить, что такое синхронная скорость.

Синхронная скорость – это такая скорость, с которой вращается магнитное поле в роторной машине, если быть точным, то это угловая скорость вращения вектора магнитного поля. Скорость вращения поля зависит от частоты протекающего тока и количества полюсов машины.

Асинхронный двигатель всегда работает на скорости меньшей, чем скорость синхронного вращения, потому как магнитное поле, которое образовано обмотками статора, будет генерировать встречный магнитный поток в роторе. Взаимодействие этого сгенерированного встречного магнитного потока с магнитным потоком статора сделает так, что ротор начнёт вращаться. Так как магнитный поток в роторе будет отставать, то ротор никогда не сможет самостоятельно достигнуть синхронной скорости, то есть такой же с какой вращается вектор магнитного поля статора.

Существует два основных типа асинхронного двигателя, которые определяются по типу подводимого питания. Это:

  • однофазный асинхронный двигатель;
  • трёхфазный асинхронный двигатель.

Следует заметить, что однофазный асинхронный двигатель не способен самостоятельно начинать движение (вращение). Для того, чтобы он начал вращаться, необходимо создать некоторое смещение из положения равновесия. Это достигается различными способами, с помощью дополнительных обмоток, конденсаторов, переключений в момент пуска. В отличие от однофазного асинхронного двигателя, трёхфазный двигатель способен начинать самостоятельное движение (вращение) без внесения каких-либо изменений в конструкцию или условия пуска.

От двигателей постоянного тока (DC) асинхронные двигатели переменного тока (AC) конструктивно отличаются тем, что питание подаётся на статор, в отличие от двигателя постоянного тока, в котором через щёточный механизм подаётся питание на якорь (ротор).

Принцип работы асинхронного двигателя

Подавая напряжение только на обмотку статора, асинхронный двигатель начинает работать. Интересно знать, как это работает, почему так происходит? Это очень просто, если понять, как происходит процесс индукции, когда в роторе индуцируется магнитное поле. Например, в машинах постоянного тока, приходится отдельно создавать магнитное поле в якоре (роторе) не через индукцию, а посредством щёток.

Когда мы подаём напряжение на обмотки статора, в них начинает протекать электрический ток, который создаёт магнитное поле вокруг обмоток. Далее, от многих обмоток, которые расположены на магнитопроводе статора формируется общее магнитное поле статора. Это магнитное поле характеризуется магнитным потоком, величина которого изменяется во времени, кроме этого направление магнитного потока меняется в пространстве, а точнее оно вращается. В итоге получается, что вектор магнитного потока статора вращается как раскрученная праща с камнем.

В полном соответствии с законом электромагнитной индукции Фарадея, в роторе, который имеет короткозамкнутую обмотку (короткозамкнутый ротор). В этой роторной обмотке будет протекать наведённый электрический ток, так как цепь замкнута, и она находится в режиме короткого замыкания. Этот ток точно также как и питающий ток в статоре будет создавать магнитное поле. Ротор двигателя становится магнитом внутри статора, который имеет магнитное вращающееся поле. Оба магнитных поля от статора и ротора начнут взаимодействовать, подчиняясь законам физики.

Так как статор неподвижен и его магнитное поле вращается в пространстве, а в роторе индуцируется ток, что фактически делает из него постоянный магнит, подвижный ротор начинает вращаться потому, как магнитное поле статора начинает его толкать, увлекая за собой. Ротор как бы сцепляется с магнитным полем статора. Можно сказать, что ротор стремится вращаться синхронно с магнитным полем статора, но для него это недостижимо, так как в момент синхронизации магнитные поля компенсируют друг друга, что приводит к асинхронной работе. Другими словами при работе асинхронного двигателя ротор скользит в магнитном поле статора.

Скольжение может быть как с запаздыванием, так и с опережением. Если происходит запаздывание, то имеем двигательный режим работы, когда электрическая энергия преобразуется в механическую энергию, если скольжение происходит с опережением ротора, то имеем генераторный режим работы, когда механическая энергия преобразуется в электрическую.

Создаваемый крутящий момент на роторе зависит от частоты переменного тока питания статора, а также от величины напряжения питания. Изменяя частоту тока и величину напряжения можно влиять на крутящий момент ротора и тем самым управлять работой асинхронного двигателя. Это справедливо как для однофазных, так и трёхфазных асинхронных двигателей.

Асинхронный электродвигатель

Виды асинхронного двигателя

Однофазный асинхронный двигатель подразделяется на следующие виды:

  • С раздельными обмотками (Split-phase motor);
  • С пусковым конденсатором (Capacitor start motor);
  • С пусковым конденсатором и рабочим конденсатором (Capacitor start capacitor run induction motor);
  • Со смещённым полюсом (Shaded-pole motor).

Трёхфазный асинхронный двигатель делится на следующие виды:

  • С короткозамкнутым ротором в виде беличьей клетки (Squirrel cage induction motor);
  • С контактными кольцами, фазным ротором (Slip ring induction motor);

Как было упомянуто выше, однофазный асинхронный двигатель не может самостоятельно начинать движение (вращение). Что следует понимать под самостоятельностью? Это когда машина начинает работать автоматически без какого-либо влияния из внешней среды. Когда мы включаем бытовой электроприбор, например вентилятор, то он начинает работать сразу же, от нажатия клавиши. Необходимо отметить, что в быту используется однофазный асинхронный двигатель, например двигатель в вентиляторе. Как же происходит такой самостоятельный запуск, если выше сказано, что такой тип двигателей его не допускает? Для того, чтобы разобраться в этом вопросе надо изучить способы пуска однофазных моторов.

Почему трёхфазный асинхронный двигатель самозапускающийся?

В трёхфазной системе каждая фаза относительно двух других имеет угол равный 120 градусов. Все три фазы, таким образом, расположены равномерно по кругу, круг имеет 360 градусов, а это три раза по 120 градусов (120+120+120=360).

Асинхронный электродвигатель

Если рассмотреть три фазы, А, B, C, то можно заметить, что лишь одна из них в начальный момент времени будет иметь максимальное значение моментального значения напряжения. Вторая фаза будет увеличивать значение своего напряжения вслед за первой, а третья фаза будет следовать за второй. Таким образом, мы имеем порядок чередования фаз A-B-C по мере нарастания их значения и возможен другой порядок в порядке убывания напряжения C-B-A. Даже если записать чередование иначе, например вместо A-B-C, написать B-C-A, то чередование останется прежним, так как цепочка чередования в любом порядке образует замкнутый круг.

Как же будет вращаться ротор асинхронного трёхфазного двигателя? Так как ротор увлекается магнитным полем статора и скользит в нем, то совершенно очевидно, что ротор будет двигаться в направлении вектора магнитного поля статора. В какую сторону будет вращаться магнитное поле статора? Так как обмотка статора трёхфазная и все три обмотки расположены равномерно на статоре, то образованное поле будет вращаться в направлении чередования фаз обмоток. Отсюда делаем вывод. Направление вращения ротора зависит от порядка чередования фаз обмоток статора. Изменив порядок чередования, фаз мы получим вращение двигателя в противоположную сторону. На практике, для изменения вращения двигателя достаточно поменять на местами две любые питающие фазы статора.

Почему однофазный асинхронный двигатель не начинает вращаться самостоятельно?

По той причине, что он питается от одной фазы. Магнитное поле однофазного двигателя является пульсирующим, а не вращающимся. Основная задача запуска заключается в создании из пульсирующего поля вращающегося. Эта проблема решается с помощью создания смещения фазы в другой обмотке статора с помощью конденсаторов, индуктивностей и пространственного расположения обмоток в конструкции двигателя.

Необходимо отметить, что однофазные асинхронные двигатели эффективны в использовании при наличии постоянной механической нагрузки. Если нагрузка меньше и двигатель работает, не достигая своей максимальной нагрузки, то его эффективность значительно снижается. Это является недостатком однофазного асинхронного двигателя и поэтому, в отличии от трёхфазных машин, их применяют там, где механическая нагрузка постоянна.

*****

Асинхронный двигатель - принцип работы и устройство

8 марта 1889 года величайший русский учёный и инженер Михаил Осипович Доливо-Добровольский изобрёл трёхфазный асинхронный двигатель с короткозамкнутым ротором.

Асинхронный электродвигатель

Современные трёхфазные асинхронные двигатели являются преобразователями электрической энергии в механическую. Благодаря своей простоте, низкой стоимости и высокой надёжности асинхронные двигатели получили широкое применение. Они присутствуют повсюду, это самый распространённый тип двигателей, их выпускается 90% от общего числа двигателей в мире. Асинхронный электродвигатель поистине совершил технический переворот во всей мировой промышленности.

Огромная популярность асинхронных двигателей связана с простотой их эксплуатации, дешивизной и надежностью.

Асинхронный двигатель- это асинхронная машина, предназначенная для преобразования электрической энергии переменного тока в механическую энергию. Само слово “асинхронный” означает не одновременный. При этом имеется ввиду, что у асинхронных двигателей частота вращения магнитного поля статора всегда больше частоты вращения ротора. Работают асинхронные двигатели, как понятно из определения, от сети переменного тока.

Устройство

Асинхронный электродвигатель

На рисунке: 1 - вал, 2,6 - подшипники, 3,8 - подшипниковые щиты, 4 - лапы, 5 - кожух вентилятора, 7 - крыльчатка вентилятора, 9 - короткозамкнутый ротор, 10 - статор, 11 - коробка выводов.

Основными частями асинхронного двигателя являются статор (10) и ротор (9).

Статор имеет цилиндрическую форму, и собирается из листов стали. В пазах сердечника статора уложены обмотки статора, которые выполнены из обмоточного провода. Оси обмоток сдвинуты в пространстве относительно друг друга на угол 120°. В зависимости от подаваемого напряжения концы обмоток соединяются треугольником или звездой.

Асинхронный электродвигатель

Роторы асинхронного двигателя бывают двух видов: короткозамкнутый и фазный ротор.

Короткозамкнутый ротор представляет собой сердечник, набранный из листов стали. В пазы этого сердечника заливается расплавленный алюминий, в результате чего образуются стержни, которые замыкаются накоротко торцевыми кольцами. Эта конструкция называется "беличьей клеткой". В двигателях большой мощности вместо алюминия может применяться медь. Беличья клетка представляет собой короткозамкнутую обмотку ротора, откуда собственно название.

Асинхронный электродвигатель

Фазный ротор имеет трёхфазную обмотку, которая практически не отличается от обмотки статора. В большинстве случаев концы обмоток фазного ротора соединяются в звезду, а свободные концы подводятся к контактным кольцам. С помощью щёток, которые подключены к кольцам, в цепь обмотки ротора можно вводить добавочный резистор. Это нужно для того, чтобы можно было изменять активное сопротивление в цепи ротора, потому что это способствует уменьшению больших пусковых токов. Подробнее о фазном роторе можно прочитать в статье - асинхронный двигатель с фазным ротором.

Асинхронный электродвигатель

Принцип работы

При подаче к обмотке статора напряжения, в каждой фазе создаётся магнитный поток, который изменяется с частотой подаваемого напряжения. Эти магнитные потоки сдвинуты относительно друг друга на 120 °. как во времени, так и в пространстве. Результирующий магнитный поток оказывается при этом вращающимся.

Результирующий магнитный поток статора вращается и тем самым создаёт в проводниках ротора ЭДС. Так как обмотка ротора, имеет замкнутую электрическую цепь, в ней возникает ток, который в свою очередь взаимодействуя с магнитным потоком статора, создаёт пусковой момент двигателя, стремящийся повернуть ротор в направлении вращения магнитного поля статора. Когда он достигает значения, тормозного момента ротора, а затем превышает его, ротор начинает вращаться. При этом возникает так называемое скольжение .

Скольжениеs - это величина, которая показывает, насколько синхронная частота n1 магнитного поля статора больше, чем частота вращения ротора n2 . в процентном соотношении.Асинхронный электродвигатель

Скольжение это крайне важная величина. В начальный момент времени она равна единице, но п о мере возрастания частоты вращения n2 ротора относительная разность частот n1 -n2 становится меньше, вследствие чего уменьшаются ЭДС и ток в проводниках ротора, что влечёт за собой уменьшение вращающего момента. В режиме холостого хода, когда двигатель работает без нагрузки на валу, скольжение минимально, но с увеличением статического момента, оно возрастает до величины sкр - критического скольжения. Если двигатель превысит это значение, то может произойти так называемое опрокидывание двигателя, и привести в последствии к его нестабильной работе. Значения скольжения лежит в диапазоне от 0 до 1, для асинхронных двигателей общего назначения оно составляет в номинальном режиме - 1 - 8 %.

Как только наступит равновесие между электромагнитным моментом, вызывающим вращение ротора и тормозным моментом создаваемым нагрузкой на валу двигателя процессы изменения величин прекратятся.

Выходит, что принцип работы асинхронного двигателя заключается во взаимодействии вращающегося магнитного поля статора и токов, которые наводятся этим магнитным полем в роторе. Причём вращающий момент может возникнуть только в том случае, если существует разность частот вращения магнитных полей.

*****

Асинхронный электродвигатель

Англоязычный справочник называет асинхронный электродвигатель индукционным. Сразу точки встают над i. Интернет забит вопросами отличий данного типа машин, нюансы коллекторных, синхронных движков, на деле выходит просто. Единственный вид двигателей, создающий полюсы явлением индукции. Прочие конструкции применяют постоянные магниты, катушки, питаемые током… Только в индукционных (асинхронных) двигателях используются наводки, создающие движущую силу. Фактор определяет особенность – отличие скорости вращения вала от частоты поля.

Устройство асинхронного двигателя

Асинхронный электродвигатель

Статор асинхронного двигателя

Начнем простейшим распространенным вариантом: питание переменным током подается на обмотки статора. Посмотрите фото: типичный образчик статора. Вынув ротор, нельзя сказать, какому типу двигателей принадлежит сердечник, увитый медью. Получили главный вывод: статор не определяет методику формирования движущей силы. Скорее выступает опорой, относительно которой действует статор.

Видим составной сердечник, содержащий две катушки. Направление намотки создает два явных полюса. Нельзя назвать сгущения напряженности поля северным или южным, поскольку направление линий постоянно меняется (с удвоенной частотой сети 100 Гц). Сборка ведется следующим образом:

  1. Катушки мотают отдельно. Конструкторы знают, сколько витков нужно, каким проводом вести.
  2. Полученный моток надевают аккуратно на распорки магнитопровода (традиционной формы буквы Т). Для изоляции прокладывают слой винила, другого полимера.
  3. Затем концы обмоток чуть пригибают к периферии, витки плотно упираются в основание буквы Т.
  4. В нашем случае сердечник составной, внутренняя часть катушками вставлена во внешнее кольцо. Но чаще конструкция попроще.

Сердечник собирается из пластин, изолированных друг от друга при помощи лака. Идет работа асинхронного электродвигателя на 230 вольт, переменное поле наводит вихревые токи, вызывая эффект перемагничивания. Чтобы снизить потери, сердечник разбивается на пластины. Специальная сталь, легированная добавками кремния обеспечивает низкий коэффициент электропроводности.

Асинхронный электродвигатель

Статор электрического двигателя

В бытовых асинхронных электродвигателях полюсов статора два. Встречаются исключения из правила. На другом снимке видим статор асинхронного двигателя напольного вентилятора с тремя скоростями. Полюсов восемь, чтобы запитать такую кучу железа, понадобился конденсатор. Сдвигает фазу напряжения на минус 90 градусов относительно тока. Становится возможным создать переменное вращающееся поле внутри статора. Данный тип асинхронных двигателей называется конденсаторным.

Первым две фазы использовать предложил Никола Тесла.

Схема выглядит следующим образом:

  1. Четыре обмотки, лежащие в вершинах креста запитываются сетью 230 вольт. Две – противолежащие – имеют один знак полюса, прочие – другой. Получается, поле вращается с половинной скоростью сети (25 Гц). Этого хватает исправной работе вентилятора.
  2. Плавный пуск асинхронного электродвигателя и работы возможны только в условиях, когда поле сглажено. Для этих целей применяются четыре обмотки, лежащие по диагоналям. Здесь напряжение сдвинуто на 90 градусов. Использованием вспомогательных катушек технические характеристики улучшаются.

Как подстраиваются обороты? Регуляторы скорости асинхронного электродвигателя коммутируют обмотку. Клавиатура управления устроена в каждый момент времени допускать нажатие одной кнопки, либо никакой. Восемь обмоток имеют пару отводов. Статором производится нужная коммутация, некоторые ветви запитываются конденсатором. Нажатие каждой кнопки включает в работу часть обмотки. Полностью статор работает на высшей скорости.

Асинхронный электродвигатель

Принцип работы схемы

Примерная схема, демонстрирующая принцип работы, иллюстрируется фото. Скорость вращения задается коммутацией обмоток кнопками 1, 2, 3. Необходимость защиты от одновременного включения диктуется требованиями к нормальной работе устройства. В результате реализуется простейшими методами управление по скорости.

Читайте также: Устройство коллекторного электродвигателя

Сердечник магнитопровода составлен листами электротехнической стали, снижающей потерь на нагрев. Температура может достигать значительных размеров, поэтому ротор асинхронного двигателя вентилятора снабжается лопастями (см. фото). Любой вентилятор реально может только разогревать воздух, никак не наоборот.

Асинхронный электродвигатель

Роторы асинхронных двигателей

Ротор асинхронного двигателя

В данном случае двигатель обеспечит долговременную работу. Поэтому ротор снабжен лопастями тангенциального вентилятора. Помогает охладить конструкцию жаркими летними ночами. Хозяин может спокойно спать, игнорируя возможность пожара. Любой хороший прибор работает аналогичным образом (себя охлаждает). В данном случае двигатель сконструирован по схеме с короткозамкнутым ротором. На валу сидит барабан, где в силумин утоплены медные жилы. Закорочены друг на друга кольцевым соединителем. Подобное техническое решение в литературе традиционно называется беличьей клеткой (колесом) в силу очевидных причин.

Асинхронный короткозамкнутый электродвигатель является доминирующим в быту. Поля в проводниках наводятся статором, затем происходит сцепление через эфир, вал набирает обороты. Никогда не догонит частоту сети. Потому что индукционные токи обращаются в нуль, сцепление нарушается. Вал тормозит, снова подхватывается полем. Подобным образом действуют однофазные асинхронные электродвигатели, любые другие. В сущности, нет разницы, при помощи чего создается переменное поле.

Выделяют ещё одно большое семейство. Устройство асинхронного электродвигателя принципиально иное. Ротор снабжен обмотками, как коллекторный мотор. Обычно трехфазные. Это позволит навести гораздо более сильные поля, возникает крупная проблема: сложно стронуть с места вал. Огромная напряженность поля образует невероятной силы сцепление, за счет чего имеется возможность выхода оборудования из строя. Кроме того вал вообще так не раскрутится.

Вот поэтому для уменьшения силы наведенных токов (напряженности поля) в цепи всех фаз ротора врубается реостат. Активное сопротивление мешает ЭДС развить мощность на валу: некоторая доля рассеивается джоулевым теплом, формируемым активным сопротивлением. Стартовый момент асинхронного двигателя с фазным ротором достаточно велик, срыва оборотов не происходит. Понятно, что значение сопротивлений реостата для каждой конструкции свое. Определяют цифру ротор асинхронного электродвигателя, заданные характеристики, стартовая нагрузка.

Обратите внимание, что во всех случаях с асинхронными двигателями наблюдаем большие потери. Особенно хорошо видно на примере реостата. Мощность асинхронного электродвигателя напрямую тратится на рассеиваемое тепло. Главным достоинство рассматриваемого класса приборов все-таки считаются простота конструкции и обслуживания. В противном случае любые типы асинхронных электродвигателей заброшены бы были на помойку истории.

Как работает асинхронный двигатель

Статор создает вращающееся магнитное поле. Направление линий напряженности определяется правилом буравчика (правой руки). Поэтому статор пока отложим в сторону, попробуем понять, что параллельно происходит на роторе. Начнем беличьей клеткой.

Внутри статора находится поле, линии напряженности которого в первом приближении направлены к центру, где находится вал. Пересекают проводник беличьей клетки под углом близким 90 градусам. По правилу правой руки переменное поле индуцирует ЭДС, порождающую ток. В результате возникает ответ.

Читайте также: Как выбрать лобзик

Любая пара проводников беличьей клетки обращается в рамку. Вокруг вращается поле статора. По правилу руки возникает ответное поле, направленное противоположно исходному:

  1. Ротор движется медленнее статора. Пусть вращение описывает часовую стрелку.
  2. В какой-то момент северный полюс начинает догонять один из проводников беличьей клетки.
  3. Ток направлен так, что круговые линии напряженности ответного магнитного поля идут навстречу полюсу.
  4. Получается, впереди по курсу полюс наталкивается на одноименный знак заряда, начинает толкать его. Позади образуется «юг», старающийся бежать вслед полю.

Асинхронный электродвигатель

Простое краткое объяснение того, почему беличья клетка, в конце концов, начинает вращаться. Ротор не должен быть слишком тяжелым, сцепление полей не очень сильное. Это объясняет низкое тяговое усилие, развиваемое асинхронным двигателем на старте. Пусковой ток высок, поскольку ничто не препятствует генерации поля внутри статора. Обратите внимание: в роторе однофазного асинхронного двигателя, показанного на фото в начале статьи, проводники беличьей клетки чуть наклонены к оси барабана. Помогает создать более равномерный магнитный полюс, компенсируя недостатки (в первую очередь неравномерность) вращения поля статора.

Фазный ротор состоит из обмоток, нормаль которых направлена примерно на центр двигателя (вал). Можно каждую представить гипертрофированной ячейкой беличьей клетки. Витков много (в дрелях, к примеру, порядка 40), сила поля намного выше. За счет резкого скачка на старте потребляемая энергия стала бы слишком большой. Уровень ЭДС значителен (определен скоростью изменения магнитного потока). Цепь ротора дополняется реостатом, пытаются компенсировать недостаток. Активное сопротивление понижает ток, закономерно снижая ответное поле, генерируемое проводниками.

Фазный ротор может улучшить характеристики асинхронных электродвигателей, два-три проводника (грубо говоря) дают большее тяговое усилие. К минусам технического решения относят наличие токосъемников, щеточного аппарата. Для снижения износа в некоторых асинхронных двигателях после набора оборотов ротор закорачивается специальным механизмом. Намного продляется жизнь оборудования.

Не видим причин рассматривать подробнее фазный ротор, лучшей иллюстрацией послужит усиленная беличья клетка. Представьте себе: вместо одной стало сорок штук! Количество (от 40 и вниз) регулируется сопротивлением реостата.

Как задать обороты асинхронного двигателя

Любой, в том числе асинхронный трехфазный, электродвигатель неспособен развить обороты близкие частоте поля. Количество полюсов стремятся снизить. Но даже в этом случае редко удается достичь желанных 3000 об/мин (50 Гц х 60 сек). В принципе невозможно. Увеличение количества полюсов статора практикуется для понижения оборотов, как показано выше на примере напольного вентилятора.

Чаще практикуется подключение асинхронного электродвигателя с короткозамкнутым ротором на трехфазный регулятор амплитуды. Методика позволит максимально просто добиться результата. Токи асинхронных электродвигателей велики на старте, «благодаря» потерям сердечника ротора (с ростом оборотов снижаются). Нельзя сказать, что ремонт своими руками статоров относится к категории простых, но намного лучше, нежели перематывать ротор коллектора. Простотой конструкции объясняется любовь промышленности к этому роду устройств.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *