Tl431

Стабилитрон TL431: схема включения

TL431- это интегральный стабилитрон. В цепи он играет роль источника опорного напряжения. Используется представленный элемент, как правило, в блоках питания. Устройство у стабилитрона довольно простое. Всего у модели используется три выхода. В зависимости от модификации в корпусе могут располагаться до десяти транзисторов. Отличительной чертой TL431 считается хорошая термостабильность.

Схема включения на 2.48 В

У стабилитрона TL431 схема включения на 2.48 В имеет одноступенчатый преобразователь. В среднем рабочий ток в системе достигает уровня 5.3 А. Резисторы для передачи сигнала могут использоваться с различной проводимостью напряжения. Точность стабилизаций в указанных устройствах колеблется в районе 2 %.

Для повышения чувствительности стабилитрона используются различные модуляторы. Как правило, подбираются именно дипольного типа. В среднем емкость их не более 3 пФ. Однако в данном случае многое зависит от проводимости тока. Чтобы снизить риск перегрева элементов, используются расширители. Подключение стабилитронов осуществляется через катод.

Tl431

Включение устройства на 3.3 В

У стабилитрона TL431 схема включения на 3.3В подразумевает использование одноступенчатого преобразователя. Резисторы для передачи импульса применяются селективного типа. Еще у стабилитрона TL431 схема включения 3.3 вольта имеет модулятор небольшой емкости. Чтобы снизить риск коротких замыканий, применяют предохранители. Устанавливаются они, как правило, за стабилитронами.

Для усиления сигнала не обойтись без фильтров. В среднем пороговое напряжение колеблется в районе 5 Вт. Рабочий ток системы составляет не более 3.5 А. Как правило, точность стабилизации не превышает 3%. Также важно отметить, что подключение стабилитрона может осуществляться через векторный переходник. В этом случае транзистор подбирается резонного типа. В среднем емкость модулятора должна составлять 4.2 пФ. Тиристоры используются как фазового, так и открыто типа. Чтобы увеличить проводимость тока, необходимы триггеры.

На сегодняшний день указанные элементы оснащаются усилителями разной мощности. В среднем пороговое напряжение в системе достигается 3.1 Вт. Показатель рабочего тока колеблется в районе 3.5 А. Также важно учитывать выходное сопротивление. Представленный параметр обязан составлять не более 80 Ом.

Tl431

Подключение к цепи 14 В

У стабилитрона TL431 схема включения 14V подразумевает использование скалярного преобразователя. В среднем пороговое напряжение равняется 3 Вт. Как правило, рабочий ток не превышает 5 А. При этом допустимая перегрузка колеблется в районе 4 Ач. Также у стабилитрона TL431 схема включения 14V имеет усилители как однополюсного, так и двухполюсного типа. С целью улучшения проводимости не обойтись без тетрода. Использоваться он может с одним или двумя фильтрами.

Стабилитроны серии A

Для блоков питания и инверторов используются серии A TL431. Как проверить правильность подключения элемента? На самом деле это можно сделать при помощи тестера. Показатель порогового сопротивления обязан составлять 80 Ом. Работать устройство способно через преобразователи одноступенчатого и векторного типа. Резисторы в данном случае используются с обкладкой.

Если говорить про параметры, то номинальное напряжение цепи не превышает 5 Вт. В данном случае рабочий ток колеблется в районе 3.4 А. Чтобы снизить риск перегревов транзисторов, применяются расширители. Для моделей серии A они подходят только коммутируемого типа. Чтобы увеличить чувствительность устройства, необходимы мощные модуляторы. В среднем параметр выходного сопротивления не превышает 70 Ом.

Tl431

Устройства серии CLP

Стабилитронов TL431 схема включения имеет одноступенчатые преобразователи. Встретить модель CLP можно как в инверторах, так и во многих бытовых устройствах. Пороговое напряжение стабилитрона колеблется в районе 3 Вт. Непосредственно рабочий ток составляет 3.5 А. Точность стабилизации у элементов не превышает 2.5%. Для регулировки выходного сигнала используются модуляторы разных типов. Триггеры в данном случае подбираются с усилителями.

Стабилитроны серии ACLP

Стабилитронов TL431 схема включения имеет векторные или скалярные преобразователи. Если рассматривать первый вариант, то уровень рабочего тока составляет не более 4 А. В данном случае точность стабилизации составляет примерно 4%. Для усиления сигнала используются триггеры, а также тиристоры.

Если рассматривать схему подключения со скалярным преобразователем, то модуляторы применяются с емкостью около 6 пФ. Непосредственно транзисторы используются резонансного типа. Для усиления сигнала подойдут обычные триггеры. Также важно отметить, что показатель чувствительности устройства колеблется в районе 20 мВ.

Tl431

Для дипольных инверторов часто используются чери АС стабилитроны TL431. Как проверить работоспособность подсоединенного элемента? Сделать это можно при помощи обычного тестера. Параметр выходного сопротивления обязан составлять не более 70 Ом. Также важно отметить, что устройства этой серии включаются через векторный преобразователь.

В данном случае скалярные модификации не подходят. Во многом это связано с низким порогом проводимости тока. Также важно отметить, что показатель номинального напряжения не превышает 4 Вт. Рабочий ток в цепи поддерживается на уровне 2 А. Для понижения тепловых потерь используются различные тиристоры. На сегодняшний день выпускаются расширительные и фазовые модификации.

Модели с корпусом КТ-26

В бытовых электроприборах часто встречаются с корпусом КТ-26 стабилитроны TL431. Схема включения подразумевает использование дипольных модуляторов. Производятся они с различной проводимостью тока. Параметр предельной чувствительности системы колеблется в районе 430 мВ.

Непосредственно выходное сопротивление достигает не более 70 Ом. Триггеры в данном случае используются лишь с усилителями. Для уменьшения риска возникновения коротких замыканий применяются фильтры открытого и закрыто типа. Непосредственно подключение стабилитрона осуществляется через катод.

Корпус КТ-47

TL431 (стабилизатор) с корпусом КТ-47 можно встретить в блоках питания различной мощности. Схема включения элемента подразумевает использование векторных преобразователей. Модулятор для цепей подходит емкостью до 4 пФ. Непосредственно выходное сопротивление устройств составляет примерно 70 Ом. Для улучшения проводимости стабилитронов используются тетроды только лучевого типа. Как правило, точность стабилизации не превышает 2%.

Для блоков питания на 5 В

В блоках питания 5 В включение TL431 осуществляется через усилители с различной проводимостью тока. Непосредственно преобразователи используются одноступенчатого типа. Также в некоторых случаях применяются векторные модификации. В среднем выходное сопротивление составляет около 90 Ом. Показатель точности стабилизации в устройствах составляет 2%. Расширители для блоков используются как коммутируемого, так и открыто типа. Триггеры можно использовать только с фильтрами. На сегодняшний день они производятся с одним и несколькими элементами.

Tl431

Схема включения для блоков на 10 В

Схема включения стабилитрона в блок питания подразумевает использование одноступенчатого либо векторного преобразователя. Если рассматривать первый вариант, то модулятор подбирается с емкостью на уровне 4 пФ. В данном случае триггер используется лишь с усилителями. Иногда для повышения чувствительности стабилитрона применяются фильтры. Пороговое напряжение цепи в среднем составляет 5.5 Вт. Рабочий ток системы колеблется в районе 3.2 А.

Параметр стабилизации, как правило, не превышает 3%. Если рассматривать схему с векторным преобразователем, то тут не обойтись без трансивера. Использоваться он может либо открытого, либо хроматического типа. Модулятор устанавливается с емкостью на уровне 5.2 пФ. Расширитель встречается довольно редко. В некоторых случаях он способен повысить чувствительность стабилитрона. Однако важно учитывать, что тепловые потери элемента значительно возрастают.

Tl431

Схема для блоков на 15 В

Стабилитрона TL431 схема включения через блок на 15 В осуществляется при помощи одноступенчатого преобразователя. В свою очередь, модулятор подходит с емкостью на уровне 5 пФ. Резисторы применяются исключительно селективного типа. Если рассматривать модификации с триггерами, то параметр порогового напряжения не превышает 3 Вт. Точность стабилизации находится в районе 3%. Фильтры для системы подходят как открытого, так и закрытого типа.

Также важно отметить, что в цепи может устанавливаться расширитель. На сегодняшний день модели выпускаются в основном коммутируемого типа. У модификаций с трансиверами проводимость тока не превышает 4 мк. В данном случае показатель чувствительности стабилитрона колеблется в районе 30 мВ. Выходное сопротивление при этом достигает примерно 80 Ом.

Tl431

Для автомобильных инверторов

Для автомобильных инверторов часто используются серии АС стабилитроны TL431. Схема включения в данном случае подразумевает использование двухразрядных триодов. Непосредственно фильтры применяются открытого типа. Если рассматривать схемы без расширителя, то пороговое напряжение колеблется в районе 10 Вт.

Непосредственно рабочий ток составляет 4 А. Параметр перегрузки системы допускается в 3 мА. Если рассматривать модификации с расширителями, то в данном случае устанавливаются высокоемкостные модуляторы. Резисторы используются стандартно селективного типа.

В некоторых случаях применяются разной мощности усилители. Параметр порогового напряжения, как правило, не превышает 12 Вт. Выходное сопротивление системы может колебаться от 70 до 80 Ом. Показатель точности стабилизации равняется примерно 2%. Рабочий ток у систем составляет не более 4.5 А. Непосредственно подключение стабилитронов происходит через катод.

*****

Микросхема TL431 — недорогой регулируемый стабилитрон со следующими характеристиками:

  • Напряжение между катодом и анодом — 0…+36 В.
  • Образцовое напряжение 2,50 В с погрешностью ±2% для TL431, ±1% для TL431A ±0,5% для TL431B.
  • Напряжение стабилизации от 2,5 до 36 В, задается двумя внешними резисторами.
  • Ток стабилизации 0,5… 100 мА, внутреннее сопротивление 0,2 Ом.
  • Температурный дрейф образцового напряжения не более 4…25 мВ во всем диапазоне рабочих температур.

TL431 часто применяют в импульсных источниках питания.

Tl431
Типовые схемы включения стабилитронов TL431

Разберем эти схемы подробнее.
Использовать микросхему можно как обычный стабилитрон (рис. а), у которого прямое напряжение равняется 0,7 В, а обратное равно напряжению стабилизации. Сопротивления обоих резисторов могут быть любыми, но более 1 кОм, чтобы не шунтировать стабилизатор, и менее 100 кОм, чтобы можно было не учитывать входной ток по входу REF (тип 2 мкА).
А благодаря встроенному компаратору ее можно использовать и как ограничитель/генератор тока (рис. б и в). В этих схемах на базу транзистора нужно подать через резистор R1 небольшой ток от источника питания.
Падение напряжения на измерительном резисторе равно 2,5 В, что по современным меркам довольно много, но благодаря высочайшей стабильности выходного тока при «копеечных» деталях такие схемы тоже имеют право на жизнь.

Tl431
Цоколевка микросхем TL431 разных производителей

Кашкаров А.П. Колдунов А.С. «Оригинальные конструкции источников питания», 2010 г.

*****

Как проверить источник опорного напряжения TL431

Добрый день, друзья!

Сегодня мы с вами познакомимся с еще одной «железкой», которая используется в компьютерной технике. Она применяется не так часто, как, скажем, транзистор или диод. но тоже достойна внимания .

Что это такое – источник опорного напряжения TL431?

Tl431 В блоках питания персональных компьютеров можно встретить микросхему источника опорного напряжения (ИОН) TL431.

Можно рассматривать ее как регулируемый стабилитрон.

Но это именно микросхема, так как в ней помещено более десятка транзисторов, не считая других элементов.

Стабилитрон – это такая штуковина, которая поддерживает (стремится поддержать) постоянное напряжение на нагрузке. «А зачем это нужно?» – спросите вы.

Дело в том, что микросхемы, из которых состоит компьютер – и большие и малые – могут работать лишь в определенном (не очень большом) диапазоне питающих напряжений. При превышении диапазона весьма вероятен выход их из строя.

Поэтому в блоках питания (не только компьютерных) применяются схемы и компоненты для стабилизации напряжения.

При определенном диапазоне напряжений между анодом и катодом (и определенном диапазоне токов катода) микросхема обеспечивает на своем выходе ref опорное напряжение 2,5 В относительно анода.

Используя внешние цепи (резисторы) можно варьировать напряжение между анодом и катодом в достаточно широких пределах – от 2,5 до 36 В.

Таким образом, нам не нужно искать стабилитроны на определенное напряжение! Можно просто изменять номиналы резисторов и получить нужное нам уровень напряжения.

Tl431 В компьютерных блоках питания существует источник дежурного напряжения + 5VSB.

Если вилка блока питания вставлена в сеть, оно присутствует на одном из контактов основного питающего разъема — даже если компьютер не включен.

При этом часть компонентов материнской платы компьютера находится под этим напряжением .

Именно с помощью него и происходит запуск основной части блока питания – сигналом с материнской платы. В формировании этого напряжения часто участвует и микросхема TL431.

Tl431При выходе ее из строя величина дежурного напряжения может отличаться — и довольно сильно — от номинальной величины.

Чем это может нам грозить?

Если напряжение +5VSB будет больше чем надо, компьютер может «зависать», так как часть микросхем материнской платы питается повышенным напряжением.

Иногда такое поведение компьютера вводит неопытного ремонтника в заблуждение. Ведь он измерил основные питающие напряжения блока питания +3,3 В, +5 В, +12 В – и увидел, что они находятся в пределах допуска.

Он начинает копать в другом месте и тратит массу времени на поиск неисправности. А надо было просто измерить и напряжение дежурного источника!

Tl431Напомним, что напряжение +5VSB должно находиться в пределах 5% допуска, т.е. лежать в диапазоне 4,75 – 5,25 В.

Tl431Если напряжение дежурного источника будет меньше необходимого, компьютер может вообще не запуститься .

Как проверить TL431?

Tl431 «Прозвонить» эту микросхему как обычный стабилитрон нельзя.

Чтобы убедиться в ее исправности, нужно собрать небольшую схему для проверки.

При этом выходное напряжение в первом приближении описывается формулой

Vo = (1 + R2/R3) * Vref (см даташит*), где Vref — опорное напряжение, равное 2,5 В.

Tl431

При замыкании кнопки S1 выходное напряжение будет иметь величину 2,5 В (опорное напряжение), при отпускании ее – величину 5 В.

Таким образом, нажимая и отжимая кнопку S1 и измеряя мультиметром сигнал на выходе схемы, можно убедиться в исправности (или неисправности) микросхемы.

Проверочную схему можно сделать в виде отдельного модуля, используя 16-контактный разъем для DIP-микросхемы с шагом выводов 2,5 мм. Питание и щупы тестера подключаются при этом к выходным клеммам модуля.

Для проверки микросхемы нужно вставить ее в разъем, понажимать кнопку и посмотреть на дисплей тестера.

Tl431Если микросхема не вставлена в разъем, выходное напряжение будет равным примерно 10 В.

Вот и все! Просто, не правда ли?

*Даташит – это справочные данные (data sheets) на электронные компоненты. Их можно найти поисковиком в Интернете.

С вами был Виктор Геронда. До встречи на блоге!

*****

TL431 схема включения, TL431 цоколевка

TL431 одна из самых массово выпускаемых интегральных микросхем, с начала своего выпуска в 1978 году TL431 устанавливалась в большинство блоков питания компьютеров, ноутбуков, телевизоров, видео-аудио техники и другой бытовой электроники.
TL431 является прецизионным программируемым источником опорного напряжения. Такая популярность обусловлена низкой стоимостью, высокой точностью и универсальностью.

Принцип работы TL431 легко понять по структурной схеме: если напряжение на входе источника ниже опорного напряжения Vref, то и на выходе операционного усилителя низкое напряжение соответственно транзистор закрыт и ток от катода к аноду не протекает (точнее он не превышает 1 мА). Если входное напряжение станет превышать Vref, то операционный усилитель откроет транзистор и от катода к аноду начнет протекать ток.

Tl431

Самый простейший тип стабилизатора – параметрический, можно легко построить на TL431: для задания напряжения стабилизации понадобятся два резистора R1 и R2, напряжение на которое будет ‘запрограммирована’ TL431 можно определить по формуле:
Uвых=Vref( 1 + R1/R2 ).
Получается чем больше соотношение R1 к R2, тем больше выходное напряжение. Микросхема фактически стабилизирует напряжение на своем входе на уровне 2,5 В. Задавшись значением сопротивления R2 и требуемое выходное напряжение, рассчитать R1 можно по формуле:
R1=R2( Uвых/Vref – 1 ).
В данной схеме R3 рассчитывается точно также, как если бы использовался обычный стабилитрон, т.е. зависит от выходного напряжения, диапазона входного напряжения и диапазона токов нагрузки. Но есть и существенное отличие: в этой схеме на выход не стоит устанавливать конденсатор, так как этот конденсатор может вызвать генерацию паразитных колебаний. В схеме с обычным стабилитроном таких проблем не возникает.

Tl431

TL431 цоколевка

TL431 выпускается в большом количестве разных корпусов, от древних TO-92 до современных SOT-23.

Также у TL431 имеется отечественный аналог: КР142ЕН19А.

Tl431

Основные технические характеристики TL431:

  • напряжение анод-катод: 2,5…36 вольт;
  • ток анод-катод: 1…100 мА (если нужна стабильная работа, то не стоит допускать ток менее 5мА);

Точность опорного источника напряжения TL431 зависит от 6-той буквы в обозначении:

Видно, что TL431 может работать в широком диапазоне напряжений, но вот токовые способности не так велики всего 100 мА, да и мощность рассеиваемая такими корпусами не превышает сотен мили Ватт. Для получения более серьезных токов интегральный стабилитрон стоит использовать как источник опорного напряжения, регулирующую функцию доверив мощным транзисторам.

компенсационный стабилизатор напряжения

Принцип компенсационного стабилизатора на TL431 такой же как и на обычном стабилитроне: разность напряжений между входом и выходом компенсирует мощный биполярный транзистор. Но точность стабилизации получается выше, за счет того что обратная связь берется с выхода стабилизатора. Резистор R1 нужно рассчитывать на минимальный ток 5 мА, R2 и R3 рассчитываются, также как для параметрического стабилизатора.

Tl431

Чтобы стабилизировать токи на уровне единиц и десятков Ампер одним транзистором в компенсационном стабилизаторе не обойтись, нужен промежуточный усилительный каскад. Оба транзистора работают по схеме с эмиттерного повторителя, т.е. происходит усиление тока, а напряжение не усиливается.
На рисунке представлена реальная схема компенсационного стабилизатора на TL431, в ней появились новые компоненты: резистор R2 ограничивающий ток базы VT1 (например 330 Ом), резистор R3 – компенсирующий обратный ток коллектора VT2 (что особенно актуально при нагреве VT2) (например 4,7 кОм) и конденсатор C1 – повышающий устойчивость работы стабилизатора на высоких частотах (например 0,01 мкФ).

Tl431

Стабилизатор тока на TL431

Следующая схема представляет собой термостабильный стабилизатор тока. Резистор R2 является своеобразным шунтом на котором с помощью обратной связи поддерживается напряжения 2,5 В. Таким образом если пренебречь током базы по сравнению с током коллектора, то получим ток на нагрузке Iн=2,5/R2. Если значение подставлять в Омах, то ток будет в Амперах, если подставлять в кило Омах, то ток будет в мили Амперах.

Tl431

Реле времени

TL431 нашел свое применение не только как источник опорного напряжения, а и во многих других применениях. Например благодаря тому что входной ток TL431 составляет 2-4мкА, то на основе этой микросхемы можно построить реле времени: при размыкании контакта S1 C1 начинает медленно заряжаться через R1, а когда напряжение на входе TL431 достигнет 2,5 В выходной транзистор DA1 откроется и через светодиод оптопары PC817 начнет протекать ток, соответственно откроется и фототранзистор и замкнет внешнюю цепь.
В этой схеме резистор R2 ограничивает ток через оптрон и стабилизатор (например 680 Ом), R3 нужен чтобы предупредить зажигание светодиода от тока собственных нужд TL431 (например 2 кОм).

Tl431

Простое зарядное устройство для литиевого аккумулятора.

Главное отличие зарядного устройства от блока питания – четкое ограничение зарядного тока. Следующая схема имеет два режима ограничения:

Пока напряжение на выходе меньше 4,2 В ограничивается выходной ток, при достижении напряжением величины 4,2 В начинает ограничиватся напряжение и ток заряда снижается.
На следующей схеме ограничение тока осуществляют транзисторы VT1, VT2 и резисторы R1-R3. Резистор R1 выполняет функцию шунта, когда напряжение на нем превышает 0,6 В (порог открывания VT1), транзистор VT1 открывается и закрывает транзистор VT2. Из-за этого падает напряжение на базе VT3 он начинает закрываться и следовательно снижается выходное напряжение, а это ведет к снижению выходного тока. Таким образом работает обратная связь по току и его стабилизация. Когда напряжение подбирается к уровню 4,2 В в работу начинает вступать DA1 и ограничивать напряжение на выходе зарядного устройства.

Tl431

А теперь список номиналов компонентов схемы:

  • DA1 – TL431C;
  • R1 – 2,2 Ом;
  • R2 – 470 Ом;
  • R3 – 100 кОм;
  • R4 – 15 кОм;
  • R5 – 22 кОм;
  • R6 – 680 Ом (нужен для подстройки выходного напряжения);
  • VT1, VT2 – BC857B;
  • VT3 – BCP68-25;
  • VT4 – BSS138.

Запись опубликована 22.01.2016 автором в рубрике Электроника для начинающих.

Навигация по записям

TL431 схема включения, TL431 цоколевка. 9 комментариев

К1242ЕР1АП производства «Интеграл» Минск

Я бы не называл малоточность TL431 ее недостатком, это ведь не стабилизатор, как таковой, а источник опорного напряжения для него. Применяя различную периферию можно решать различные задачи по мощности, точности, надежности и т.д. Вот, внешние цепи могут быть любыми, а управляются одним и тем же устройством — TL431. Что и делает ее такой распространенной и востребованной.
Понравилась схема зарядки, где необходима регулировка и по току и по напряжению, применены и биполярный и униполярный транзисторы — каждый в своем режиме.

Да, конденсатор между анодом и катодом этого «стабилитрона» ставить не следует ни в коем случае. Я так столкнулся с самовозбуждением схемы стабилизатора напряжения, когда по неопытности решил, что с конденсатором на выходе источника опорного напряжения на TL431 схема будет работать стабильнее. Поставил конденсатор на 10 нФ, и схема «завелась», выдавая на выходе «кашу» из импульсов вместо постоянного напряжения. Что неудивительно, для операционного усилителя входящего в состав TL431 такой параметр как максимальная емкость нагрузки нужно учитывать как и для всякого другого ОУ.

Уже писал выше, что использовать источник прецизионного опорного напряжения в виде стабилизатора странно. Еще более странно, какой стабильности можно добиться емкостью в десяток нан. Стабильности задаваемого напряжения, шунтируя и устраивая паразитную ОС? Или выходного? Конечно возбудится.

А что там было о источнике опорного в виде стабилизатора? Опорное в стабилизаторе применялось в своем прямом назначении, в качестве опорного, с которым сравнивалось выходное ��

Думаю в русско язычной литературе вход опорное напряжение надо было назвать- напряжением порога или срабатывания. Интересно производитель пробовал U опр подавать на инвертирующий вход операционного усилителя может и не было само возбуждения.

Транзистор подключенный к выходу ОУ инвертирует сигнал.

Делал в свое время самодельный лабораторный блок питания с регулировкой напряжения и ограничения по току. Очень понравилась работа МС TL431 как регулятора тока. Практически исполнил регулировку от 0 до 10А, хотя она, действительно мало точная, но как управляющее звено очень даже то, что нужно.

Насчет использования TL431 не только как источника опорного напряжения… Если использовать в задающей цепи терморезистор, то можно, к примеру, прикрепив его на радиатор, регулировать вращение охлаждающего (этот радиатор) кулера. Очень удобно для блоков питания, работающих на динамическую нагрузку и лабораторных. Если же использовать фотоэлементы, то можно, к примеру регулировать подсветку, в зависимости от окружающего освещения. Очень удобно для уличных фонариков на солнечных батареях: светит солнце — заряжаются, село — начинают светить, чем темнее на улице, тем ярче.

*****

Описание регулируемого стабилитрона TL431. Схемы включения, цоколевка, аналоги, datasheet

К зарубежным аналогам можно отнести:

Схемы включения TL431

Микросхема стабилитрон TL431 может использоваться не только в схемах питания. На базе TL431 можно сконструировать всевозможные световые и звуковые сигнализаторы. При помощи таких конструкций возможно контролировать множество разнообразных параметров. Самый основной параметр — контроль напряжение.

Переведя какой-нибудь физический показатель при помощи различных датчиков в показатель напряжения, возможно изготовить прибор, отслеживающий, например, температуру, влажность, уровень жидкости в емкости, степень освещенности, давление газа и жидкости. ниже приведем несколько схем включения управляемого стабилитрона TL431.

Стабилизатор тока на TL431

Данная схема является стабилизатором тока. Резистор R2 выполняет роль шунта, на котором за счет обратной связи устанавливается напряжения 2,5 вольт. В результате этого на выходе получаем постоянный ток равный I=2,5/R2.

Индикатор повышения напряжения

Работа данного индикатора организована таким образом, что при потенциале на управляющем контакте TL431 (вывод 1) меньше 2,5В, стабилитрон TL431 заперт, через него проходит только малый ток, обычно, менее 0,4 мА. Поскольку данной величины тока хватает для того чтобы светодиод светился, то что бы избежать этого, нужно просто параллельно светодиоду подсоединить сопротивление на 2…3 кОм.

В случае превышения потенциала, поступающего на управляющий вывод, больше 2,5 В, микросхема TL431 откроется и HL1 начнет гореть. Сопротивление R3 создает нужное ограничение тока, протекающий через HL1 и стабилитрон TL431. Максимальный ток проходящий через стабилитрон TL431 находится в районе 100 мА. Но у светодиода максимально допустимый ток составляет всего 20 мА. Поэтому в цепь светодиода необходимо добавить токоограничивающий резистор R3. Его сопротивление можно рассчитать по формуле:

R3 = (Uпит. – Uh1 – Uda)/Ih1

где Uпит. – напряжение питания; Uh1 – падение напряжения на светодиоде; Uda – напряжение на открытом TL431 (около 2 В); Ih1 – необходимый ток для светодиода (5…15мА). Также необходимо помнить, что для стабилитрона TL431 максимально допустимое напряжение составляет 36 В.

Величина напряжения Uз при котором срабатывает сигнализатор (светится светодиод), определяется делителем на сопротивлениях R1 и R2. Его параметры можно подсчитать по формуле:

R2 = 2,5 х Rl/(Uз — 2,5)

Если необходимо точно выставить уровень срабатывания, то необходимо на место сопротивления R2 установить подстроечный резистор, с бОльшим сопротивлением. После окончания точной настройки, данный подстроичник можно заменить на постоянный.

Иногда необходимо проверять несколько значений напряжения. В таком случае понадобятся несколько подобных сигнализатора на TL431 настроенных на свое напряжение.

Проверка исправности TL431

Выше приведенной схемой можно проверить TL431, заменив R1 и R2 одним переменным резистором на 100 кОм. В случае, если вращая движок переменного резистора светодиод засветиться. то TL431 исправен.

Индикатор низкого напряжения

Разница данной схемы от предшествующей в том, что светодиод подключен по иному. Данное подключение именуется инверсным, так как светодиод светится только когда микросхема TL431 заперта.

Если же контролируемое значение напряжения превосходит уровень, определенный делителем Rl и R2, микросхема TL431 открывается, и ток течет через сопротивление R3 и выводы 3-2 микросхемы TL431. На микросхеме в этот момент существует падение напряжения около 2В, и его явно не хватает для свечения светодиода. Для стопроцентного предотвращения загорания светодиода в его цепь дополнительно включены 2 диода.

В момент, когда исследуемая величина окажется меньше порога определенного делителем Rl и R2, микросхема TL431 закроется, и на ее выходе потенциал будет значительно выше 2В, вследствие этого светодиод HL1 засветится.

Индикатор изменения напряжения

Если необходимо следить всего лишь за изменением напряжения, то устройство будет выглядеть следующим образом:

В этой схеме использован двухцветный светодиод HL1. Если потенциал ниже порога установленного делителем R1 и R2, то светодиод горит зеленым цветом, если же выше порогового значения, то светодиод горит красным цветом. Если же светодиод совсем не светится, то это означает что контролируемое напряжение на уровне заданного порога (0,05…0,1В).

Работа TL431 совместно с датчиками

Если необходимо отслеживать изменение какого-нибудь физического процесса, то в этом случае сопротивление R2 необходимо поменять на датчик, характеризующейся изменением сопротивления вследствие внешнего воздействия.

Пример такого модуля приведен ниже. Для обобщения принципа работы на данной схеме отображены различные датчики. К примеру, если в качестве датчика применить фототранзистор. то в конечном итоге получится фотореле, реагирующее на степень освещенности. До тех пор пока освещение велико, сопротивление фототранзистора мало.

Вследствие этого напряжение на управляющем контакте TL431 ниже заданного уровня, из-за этого светодиод не горит. При уменьшении освещенности увеличивается сопротивление фототранзистора. По этой причине увеличивается потенциал на контакте управления стабилитрона TL431. При превышении порога срабатывания (2,5В) HL1 загорается.

Данную схему можно использовать как датчик влажности почвы. В этом случае вместо фототранзистора нужно подсоединить два нержавеющих электрода, которые втыкают в землю на небольшом расстоянии друг от друга. После высыхания почвы, сопротивление между электродами возрастает и это приводит к срабатыванию микросхемы TL431, светодиод загорается.

Если же в качестве датчика применить терморезистор, то можно сделать из данной схемы термостат. Уровень срабатывания схемы во всех случаях устанавливается посредством резистора R1.

TL431 в схеме со звуковой индикацией

Помимо приведенных световых устройств, на микросхеме TL431 можно смастерить и звуковой индикатор. Схема подобного устройства приведена ниже.

Данный звуковой сигнализатор можно применить в качестве контроля за уровнем воды в какой-либо емкости. Датчик представляет собой два нержавеющих электрода расположенных друг от друга на расстоянии 2-3 мм.

Как только вода коснется датчика, сопротивление его понизится, и микросхема TL431 войдет в линейный режим работы через сопротивления R1 и R2. В связи с этим появляется автогенерация на резонансной частоте излучателя и раздастся звуковой сигнал.

Калькулятор для TL431

Для облегчения расчетов можно воспользоваться калькулятором:

Tl431
Tl431Скачать калькулятор для TL431 (103,4 Kb, скачано: 8 054)
Tl431Скачать datasheet TL431 на русском (702,6 Kb, скачано: 5 743)

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *