Двигатель на постоянных магнитах

Двигатель на постоянных магнитах и его применение

Двигатель на постоянных магнитах – это попытка уменьшить вес и габаритные размеры электрической машины, упростить ее конструкцию, повысить надежность и простоту эксплуатации. Такой двигатель позволяет и значительно увеличить КПД (коэффициент полезного действия). Наибольшего распространения он получил в качестве синхронной машины. В данном устройстве постоянные магниты предназначены и применяются для создания вращающегося магнитного поля.
Двигатель на постоянных магнитах

В настоящее время применяют комбинированный вариант: постоянные магниты вместе с электромагнитами, по катушке которых течет постоянный электрический ток. Такое комбинированное возбуждение обеспечивает множество положительных моментов: получение требуемых регулировочных характеристик напряжения и частоты вращения при уменьшении мощности возбуждения, уменьшение объема магнитной системы (и, как следствие, себестоимости такого устройства, как комбинированный двигатель на постоянных магнитах) по сравнению с классической системой электромагнитного возбуждения синхронной машины.

Двигатель на постоянных магнитах

На сегодняшний день использование постоянных магнитов возможно в устройствах мощностью всего в несколько киловольт-ампер. Однако сейчас разрабатываются постоянные магниты с улучшенными характеристиками, и мощность машин постепенно возрастает.

Синхронная машина как двигатель на постоянных магнитах используется в качестве непосредственно двигателя или генератора в приводах различной мощности. Такие устройства нашли применение и распространение на шахтах, металлургических заводах, тепловых станциях. Так как синхронный двигатель работает с самой разной реактивной мощностью, его применяют в холодильниках, насосах и других механизмах с неизменной скоростью работы. Электродвигатель на постоянных магнитах используют в устройствах и приборах малой мощности, где нужно строгое и точное постоянство скорости. Это автоматические самопишущие приборы, электрочасы, устройства программного управления и прочее. На станциях и подстанциях установлены специальные синхронные генераторы, вырабатывающие в режиме холостого хода только реактивную мощность. Такая мощность используется для асинхронных двигателей, а синхронные машины такого типа называют "компенсаторами".

Двигатель на постоянных магнитах

Принцип действия такой машины, как двигатель на постоянных магнитах, и, в частности, синхронного двигателя, основан на взаимодействии магнитного поля ротора (движущейся части) и статора (неподвижной части).

Благодаря интересным и еще не до конца изученным свойствам магнитов, часто появлялись и появляются изобретения на их основе. Например, одной из самых распространенных идей является создание такого устройства как безтопливный вечный двигатель на постоянных магнитах. С точки зрения современной науки и физики вечный двигатель невозможен (он должен был бы иметь коэффициент полезного действия больше единицы, а такое считается нереальным), но изобретатели в сфере альтернативной энергетики не теряют надежду на создание и разработку такого открытия.

Двигатель на постоянных магнитах

7 частей тела, которые не следует трогать руками Думайте о своем теле, как о храме: вы можете его использовать, но есть некоторые священные места, которые нельзя трогать руками. Исследования показыва.

Двигатель на постоянных магнитах

Каково быть девственницей в 30 лет? Каково, интересно, женщинам, которые не занимались сексом практически до достижения среднего возраста.

Двигатель на постоянных магнитах

11 странных признаков, указывающих, что вы хороши в постели Вам тоже хочется верить в то, что вы доставляете своему романтическому партнеру удовольствие в постели? По крайней мере, вы не хотите краснеть и извин.

Двигатель на постоянных магнитах

Неожиданно: мужья хотят, чтобы их жены делали чаще эти 17 вещей Если вы хотите, чтобы ваши отношения стали счастливее, вам стоит почаще делать вещи из этого простого списка.

Двигатель на постоянных магнитах

Непростительные ошибки в фильмах, которых вы, вероятно, никогда не замечали Наверное, найдется очень мало людей, которые бы не любили смотреть фильмы. Однако даже в лучшем кино встречаются ошибки, которые могут заметить зрител.

Двигатель на постоянных магнитах

Как выглядеть моложе: лучшие стрижки для тех, кому за 30, 40, 50, 60 Девушки в 20 лет не волнуются о форме и длине прически. Кажется, молодость создана для экспериментов над внешностью и дерзких локонов. Однако уже посл.

*****

Вечный двигатель на постоянных магнитах

Проблемой вечного двигателя до сих пор занимаются очень многие энтузиасты из числа ученых и изобретателей. Эта тема особенно актуальна в свете возможного топливно- энергетического кризиса, с которым может столкнуться наша цивилизация.

Одним из наиболее перспективных вариантов считается вечный двигатель на постоянных магнит ах, работающий, благодаря уникальным свойствам этого материала. Здесь скрывается большое количество энергии, которой обладает магнит ное поле. Основная задача состоит в том, чтобы выделить и преобразовать ее в механическую, электрическую и другие виды энергии. Постепенно, магнит теряет свою силу, однако, она вполне восстанавливаться под действием сильного магнит ного поля .

Общее устройство магнит ного двигателя

В стандартную конструкцию устройства входят три основные составные части. Прежде всего, это сам двигатель, статор с установленным электро магнит ом и ротор с постоянным магнит ом. На один вал, совместно с двигателем, устанавливается электромеханический генератор.

В состав магнит ного двигателя входит статический электро магнит. представляющий собой кольцевой магнит опроводс вырезанным сегментом или дугой. В электро магнит е имеется индуктивная катушка, к которой подключается электронный коммутатор, обеспечивающий реверс тока. Сюда же подключается и постоянный магнит. Для регулировки используется простой электронный коммутатор, схема которого представляет собой автономный инвертор.

Как работает магнит ный двигатель

Запуск магнит ного двигателя осуществляется с помощью электротока, подаваемого в катушку из блока питания. Магнит ные полюса в постоянном магнит е располагаются перпендикулярно электро магнит ному зазору. В результате возникающей полярности, постоянный магнит. установленный на роторе, начинает вращаться вокруг своей оси. Происходит притяжение магнит ных полюсов к противоположным полюсам электро магнит а.

Когда разноименные магнит ные полюса и зазоры совпадают, в катушке выключается ток и тяжелый ротор проходит по инерции эту мертвую точку совпадения, вместе с постоянным магнит ом. После этого, в катушке происходит изменение направления тока и в очередном рабочем зазоре значения полюсов на всех магнит ах становятся одноименными. Дополнительное ускорение ротора, в этом случае, происходит за счет отталкивания, возникающего под действием полюсов одноименного значения. Получается так называемый вечный двигатель на магнит ах, который обеспечивает постоянное вращение вала. Весь рабочий цикл повторяется после того, как ротор сделает полный круг вращения. Действие электро магнит а на постоянный магнит. практически не прерывается, что и обеспечивает вращение ротора с необходимой скоростью.

*****

Мифы и реальность про магнитный двигатель

В настоящее время магнитного двигателя до сих пор не создано, однако существует множество правдоподобных теорий, мифов, устройств даже вполне серьезных научных работ посвященных тематике магнитного двигателя.

Сначала надо понять, что из себя должен представлять магнитный двигатель в целом. Почему так много людей занимающихся разработкой магнитного двигателя видят в нем будущее?

Обычный электромотор – это не магнитный двигатель. Это устройство которое использует магнитные свойства материалов, но все таки движется за счет электрического тока.

Настоящий магнитный двигатель работает исключительно на магнитах, используя их постоянную энергию для перемещения своих механизмов.

Двигатель на постоянных магнитах

Прообраз магнитного двигателя можно встретить в каждом втором офисе ввиде всевозможных качающихся и крутящихся сувениров – там тоже используется сила постоянных магнитов для поддержания «вечности» движения. Однако и батарейки там тоже есть.

Главной проблемой всевозможных устройств основанных на постоянных магнитах является то, что магниты склонны к статическому положению равновесия. Если привинтить рядом два сильных магнита они будут находиться в движении ровно до того момента, пока не будет достигнуто максимально возможное притяжении на минимально возможном расстоянии между полюсами. Они просто повернутся друг к другу.

Поэтому все изобреатели магнитных двигателей стараются либо сделать притяжения магнитов переменным за счет механики самого двигателя, либо прибегают к экранированию.

Чисто магнитные двигатели сами по себе очень неплохи. А с добавлением управляющих контуров, реле, или использующие дисбаланс и гравитацию земли, становятся вообще идеальными и “вечными” источниками дармовой энергии!

Нашёл несколько работающих примеров различных магнитных двигателей, от самых простых собранных на коленке до чуть ли не готовых серийных японских образцов. Самый страшный ночной кошмар Чубайса и глобальной мафии – смотрим. опубликовано econet.ru

*****

Магнитный двигатель

В наше время быт современного человека, а также работа огромного количества самых различных предприятий практически полностью зависит от наличия электрической энергии. Тем не менее, существуют некоторые технологии, благодаря которым можно отказаться от использования такого вида энергии и, соответственно, получить возможность не быть привязанным к какому-нибудь определенному месту. Одним из таких устройств является магнитный двигатель.

Электрогенератор на магнитах: типы и принципы функционирования

Двигатель на постоянных магнитах

На сегодняшний день различают два вида вечных двигателей: первого порядка и второго. В первом случае имеются в виду устройства, вырабатывающие энергию из обычного потока воздуха. Для двигателей второго порядка требуется дополнительное поступление природной энергии: потоки воды либо ветра, солнечные лучи и многое другое — именно эту энергию приборы и преобразуют в электрический ток. Ученым, не смотря на законы физики, удалось создать надежный вечный двигатель второго порядка, способный функционировать за счет энергии, производимой магнитным полем.

Двигатель на постоянных магнитах

Электрогенераторы на постоянных магнитах представляют собой труд многих известных ученых: Минато и Никола Теста, Василий Шкондин и Перендев, Говард Джонсон с Лоренцо, а также знаменитый Николай Лазарев.

Существует несколько разновидностей магнитных двигателей, однако каждый из них работает при наличии магнитного поля. Они отличаются друг от друга строением и технологией. Магнитный вечный двигатель не может существовать по вполне реальной причине — спустя несколько сотен лет магниты теряют свойства, присущие им изначально.

Наиболее простым вариантом является магнитный двигатель Лоренца, который можно соорудить своими руками в домашних условиях. Он обладает анти-гравитационным свойством. В его основе лежат два разно-заряженных диска, соединенных с соответствующим источником питания. Данная конструкция устанавливается в специальный полусферический экран, а затем начинает вращаться. Благодаря этому простому сверхпроводнику можно без особых усилий создать магнитное поле.

Асинхронный магнитный двигатель

Двигатель на постоянных магнитах

Асинхронный магнитный двигатель, автором которого стал Тесла, работает за счет создаваемого вращающегося магнитного поля и эффективно производит электрический ток из получаемого потока энергии. Предварительно изолированная пластина, сделанная из металла, крепится максимально высоко над поверхностью земли. Еще одна точно такая же пластина закапывается в почвенный слой. С одной стороны установленного конденсатора провод проходит через пластину, а другой конец провода проходит по основанию пластины и соединяется с конденсатором с другой стороны. В таком случае конденсатор применяется в качестве резервуара, предназначающегося для накопления отрицательных энергетических зарядов.

Лазареву удалось создать мощный роторный кольцар — на сегодняшний день это единственный работающий ВД2. К тому же необходимо отметить, что для его изобретения характерна достаточно простая конструкция, поэтому не составит особого труда собрать такой магнитный двигатель своими руками с помощью разных подручных инструментов. Согласно схеме, используемую емкость с жидкостью (обычной водой или, например, бензином) необходимо разделить на две равные части с помощью пористой перегородки — керамического диска, к которому крепится трубка. Подобные самодельные электрогенераторы на магнитах работают по такому принципу: раствор, переходя через перегородку проникает в нижнюю зону емкости, а затем по трубке поступает наверх. Данное движение может происходить вне зависимости от обстановки окружающей среды. Главное, под капающей жидкостью установить небольшое вращающееся колесико. Именно эта технология и была положена в основу при разработке простейшей модели само-вращающегося электродвигателя на магнитах. Согласно ей, под капельницей обязательно должно быть колесико с лопастями, на котором размещаются маленькие магниты. Магнитное поле образуется при достаточно быстром перекачивании жидкости колесиком.

Шкондин создал линейный двигатель, ставший главным шагом в эволюции технологий. Это своеобразное колесо в колесе, которое широко применяется в современной транспортной промышленности. Сама система работает на абсолютно полное отталкивание. Такой электрогенератор на неодимовых магнитах можно легко установить в автомобиле практически любой модели.

Перендев — автор высококачественного альтернативного двигателя, который представляет собой устройство, производящее электроэнергию только за счет магнитов. Его конструкция состоит из динамичного и статичного круга, на них в одинаковом порядке устанавливается по несколько магнитов. Само-отталкивающаяся свободная сила обеспечивает беспрерывно вращение внутреннего круга. Поэтому данный магнитный бтг считается очень выгодным в эксплуатации.

Магнитный двигатель своими руками

При необходимости магнитный генератор можно собрать самостоятельно в домашних условиях. Нужно взять три вала, плотно соединенных друг с другом. Центральный вал обязательно должен быть повернут прямо к двум остальным, расположенным по бокам. К его середине крепится специальный диск, изготовленный из люцита и имеющий диаметр в четыре дюйма. Такие же диски, только в два раза меньше размером, соединяются с другими валами. На них ложатся магниты: по четыре по бокам и восемь посредине. В качестве основания системы можно использовать алюминиевый брусок, обеспечивающий ускорение работы устройства.

Преимущества и недостатки магнитных двигателей

К основным преимуществам данных конструкций относятся следующие:

1. Существенная экономия разного топлива;

2. Полная автономии от источника электроэнергии;

3. Возможность использования практически в любом месте;

4. Достаточно высокая мощность;

5. Гравитационные двигатели могут эксплуатироваться до полного износа, производя максимальное количество электрической энергии.

Однако имеется и ряд недостатков:

1. Иногда их работа негативно сказывается на самочувствии человека, находящегося возле устройства на протяжении долгого времени;

2. Многие модели не могут нормально функционировать в обычных условиях;

3. В некоторых случаях сложно подключить готовый мотор;

4. Достаточно высокая цена готовых приборов.

*****

Двигатель на постоянных магнитах

Магнитные двигатели (двигатели на постоянных магнитах) являются наиболее вероятной моделью «вечного двигателя». Еще в давние времена была высказана эта идея, но так никто его не создал. Многие устройства дают ученым возможность приблизиться к изобретению такого двигателя. Конструкции подобных устройств еще не доведены до практического результата. С этими устройствами связано много различных мифов.

Магнитные двигатели не расходуют энергию, являются агрегатом необычного типа. Силой, двигающей мотор, является свойство магнитных элементов. Электродвигатели также применяют магнитные свойства ферромагнетиков, но магниты приводятся в движение электрическим током. А это является противоречием основному принципиальному действию вечного двигателя. В двигателе на магнитах используется магнитное влияние на объекты. Под действием этих объектов начинается движение. Небольшими моделями таких двигателей стали аксессуары в офисах. На них двигаются постоянно шарики, плоскости. Но там для работы применены батарейки.

Ученый Тесла занимался серьезно проблемой образования магнитного двигателя. Его модель была выполнена из катушки, турбины, проводов для соединения объектов. В обмотку закладывался маленький магнит, захватывающий два витка катушки. Турбине давали небольшой толчок, раскручивали ее. Она начинала движение с большой скоростью. Такое движение называлось вечным. Двигатель Тесла на магнитах стал идеальной моделью вечного двигателя. Его недостатком стала необходимость начального задания скорости турбине.

По закону сохранения электропривод не может содержать более 100% КПД, энергия частично тратится на трение в двигателе. Такой вопрос должен решать магнитный двигатель, у которого постоянные магниты (роторный тип, линейный, униполярный). В нем осуществление механического движения элементов идет от взаимодействия магнитных сил.

Принцип работы

Многие инновационные двигатели применяют работу трансформации тока во вращение ротора, являющееся механическим движением. Вместе с ротором вращается вал привода. Это дает возможность утверждать, что всякий расчет не даст результата КПД равного 100%. Агрегат не получается автономным, он имеет зависимость. Такой же процесс можно увидеть в генераторе. В нем крутящий момент, который образуется от энергии движения, создает выработку электроэнергии на пластинах коллектора.

Двигатель на постоянных магнитах

1 — Линия раздела магнитных силовых линий, замыкающихся через отверстие и внешнюю кромку кольцевого магнита
2 — Катящийся ротор (Шарик от подшипника)
3 — Немагнитное основание (Статор)
4 — Кольцевой постоянный магнит от громкоговорителя (Динамика)
5 — Плоские постоянные магниты (Защелки)
6 — Немагнитный корпус

Магнитные двигатели применяют другой подход. Необходимость в дополнительных источниках питания сводится к минимуму. Принцип работы легко объяснить «беличьим колесом». Для производства демонстративной модели не нужны специальные чертежи или прочностной расчет. Нужно взять постоянный магнит, чтобы его полюса находились на обеих плоскостях. Магнит будет главной конструкцией. К ней добавляется два барьера в виде колец (внешний и внутренний) из немагнитных материалов. Между кольцами располагают стальной шарик. В магнитном двигателе он станет ротором. Силами магнита шарик притянется к диску противоположным полюсом. Этот полюс не будет менять свое положение при движении.

Статор включает в себя пластину, изготовленную из экранируемого материала. На нее по траектории кольца закрепляют постоянные магниты. Полюса магнитов находятся перпендикулярно в виде диска и ротора. В итоге, при приближении статора к ротору на некоторое расстояние, появляется отталкивание и притяжение в магнитах поочередно. Оно создает момент, переходит во вращательное движение шарика по траектории кольца. Запуск и торможение осуществляется движением статора с магнитами. Такой метод магнитного двигателя действует, пока магнитные свойства магнитов будут сохраняться. Расчет делается относительно статора, шариков, управляющей цепи.

На таком же принципе работают действующие магнитные двигатели. Самыми известными стали магнитные двигатели на тяге магнитов Тесла, Лазарева, Перендева, Джонсона, Минато. Так же известны двигатели на постоянных магнитах: цилиндровые, роторные, линейные, униполярные и т.д. У каждого двигателя своя технология изготовления, основанная на магнитных полях, образующихся вокруг магнитов. Вечных двигателей не бывает, так как постоянные магниты утрачивают свои свойства через несколько сотен лет.

Магнитный двигатель Тесла

Ученый исследователь Тесла стал одним из первых, кто изучал вопросы вечного двигателя. В науке его изобретение называется униполярным генератором. Сначала расчет такого устройства сделал Фарадей. Его образец не произвел стабильности работы и должного эффекта, не достиг необходимой цели, хотя принцип действия был сходным. Название «униполярный» дает понять, что по схеме модели проводник находится в цепи полюсов магнита.

Двигатель на постоянных магнитах

По схеме, обнаруженной в патенте, видна конструкция из 2-х валов. На них помещены 2 пары магнитов. Они образуют отрицательное и положительное поля. Между магнитами находятся униполярные диски с бортами, которые применяются как образующие проводники. Два диска друг с другом имеют связь тонкой лентой из металла. Лента может использоваться для вращения диска.

Двигатель Минато

Этот тип двигателя также использует магнетическую энергию для самостоятельного движения и самовозбуждения. Образец двигателя разработан японским изобретателем Минато более 30 лет назад. Двигатель обладает высокой эффективностью, характеризуется бесшумной работой. Минато утверждал, что магнитный самовращающийся двигатель такого исполнения выдает КПД более 300%.

Двигатель на постоянных магнитах

Ротор изготовлен в форме колеса или дискового элемента. На нем находятся магниты, расположенные под определенным углом. Во время приближения статора с мощным магнитом создается момент вращения, диск Минато вращается, применяет отторжение и сближение полюсов. Скорость вращения и крутящий момент мотора зависит от расстояния между ротором и статором. Напряжение мотора подается по цепи реле прерывателя.

Для предохранения от биения и импульсных движений при вращении диска применяют стабилизаторы, оптимизируют расход энергии управляющего электрического магнита. Негативной стороной можно назвать то, что нет данных по свойствам нагрузки, тяге, которые применяются реле управления. Также периодически необходимо производить намагничивание. Об этом Минато в своих расчетах не упоминал.

Двигатель Лазарева

Русский разработчик Лазарев сконструировал действующую простую модель двигателя, применяющего магнитную тягу. Роторный кольцар включает в себя резервуар с пористой перегородкой на две части. Эти половины между собой сообщаются трубкой. По этой трубке поступает поток жидкости из нижней камеры в верхнюю. Поры создают перетекание вниз за счет гравитации.

Двигатель на постоянных магнитах

При расположении колеса с расположенными на лопастях магнитами под напором жидкости возникает постоянное магнитное поле, двигатель вращается. Схема двигателя Лазарева роторного типа применяется при разработке простых устройств с самовращением.

Двигатель Джонсона

Джонсон в своем изобретении применял энергию, которая генерируется потоком электронов. Эти электроны находятся в магнитах, образуют цепь питания двигателя. Статор двигателя соединяет в себе множество магнитов. Они располагаются в виде дорожки. Движение магнитов и их расположение зависит от конструкции агрегата Джонсона. Компоновка может быть роторной или линейной.

Двигатель на постоянных магнитах

1 — Магниты якоря
2 — Форма якоря
3 — Полюса магнитов статора
4 — Кольцевая канавка
5 — Статор
6 — Резьбовое отверстие
7 — Вал
8 — Кольцевая втулка
9 — Основание

Магниты прикрепляются к особой пластине, обладающей большой магнитной проницаемостью. Одинаковые полюса магнитов статора поворачиваются в сторону ротора. Этот поворот создает отторжение и притяжение полюсов по очереди. Совместно с ними смещаются элементы ротора и статора между собой.

Джонсон организовал расчет воздушного промежутка между ротором и статором. Он дает возможность коррекции усилия и магнитной совокупности взаимодействия в направлении увеличения или снижения.

Магнитный двигатель Перендева

Двигатель самовращающейся модели Перендева так же является примером применения работы магнитных сил. Создатель этого мотора Брэди оформил патент и создал фирму еще до начала уголовного дела на него, организовал работу на поточной основе.

Двигатель на постоянных магнитах

При анализе принципа работы, схемы, чертежей в патенте можно понять, что статор и ротор выполнены в форме внешнего кольца и диска. На них по траектории кольца располагают магниты. При этом соблюдают угол, определенный по центральной оси. Из-за взаимного действия поля магнитов образуется момент вращения, осуществляется их перемещение друг относительно друга. Цепь магнитов рассчитывается путем выяснения угла расхождения.

Синхронные магнитные двигатели

Главным видом электрических двигателей является синхронный вид. У него обороты вращения ротора и статора одинаковые. У простого электромагнитного двигателя эти две части имеют в составе обмотки на пластинах. Если изменить конструкцию якоря, вместо обмотки установить постоянные магниты, то получится оригинальная эффективная рабочая модель двигателя синхронного типа.

Двигатель на постоянных магнитах

1 — Стержневая обмотка
2 — Секции сердечника ротора
3 — Опора подшипника
4 — Магниты
5 — Стальная пластина
6 — Ступица ротора
7 — Сердечник статора

Статор сделан по привычной конструкции магнитопровода из катушек и пластин. В них образуется магнитное поле вращения от электрического тока. Ротор образует постоянное поле, взаимодействующее с предыдущим, и образует момент вращения.

Нельзя забывать о том, что относительное нахождение якоря и статора имею возможность изменяться в зависимости от схемы двигателя. Например, якорь может быть сделан в форме наружной оболочки. Для запуска двигателя от сети питания применяется схема из магнитного пускателя и реле тепловой защиты.

Похожие темы:

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *